
 information

Article

RDFsim: Similarity-Based Browsing over DBpedia
Using Embeddings

Manos Chatzakis 1,2,* , Michalis Mountantonakis 1,* and Yannis Tzitzikas 1,2,*

����������
�������

Citation: Chatzakis, M.;

Mountantonakis, M.; Tzitzikas, Y.

RDFsim: Similarity-Based Browsing

over DBpedia Using Embeddings.

Information 2021, 12, 440. https://

doi.org/10.3390/info12110440

Academic Editor: Riccardo Albertoni

and Peter Winstanley

Received: 9 September 2021

Accepted: 20 October 2021

Published: 23 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Computer Science, FORTH-ICS, GR-700 13 Heraklion, Greece
2 Computer Science Department, University of Crete, GR-700 13 Heraklion, Greece
* Correspondence: chatzakis@ics.forth.gr (M.C.); mountant@ics.forth.gr (M.M.); tzitzik@ics.forth.gr (Y.T.)

Abstract: Browsing has been the core access method for the Web from its beginning. Analogously,
one good practice for publishing data on the Web is to support dereferenceable URIs, to also enable
plain web browsing by users. The information about one URI is usually presented through HTML
tables (such as DBpedia and Wikidata pages) and graph representations (by using tools such as
LODLive and LODMilla). In most cases, for an entity, the user gets all triples that have that entity
as subject or as object. However, sometimes the number of triples is numerous. To tackle this issue,
and to reveal similarity (and thus facilitate browsing), in this article we introduce an interactive
similarity-based browsing system, called RDFsim, that offers “Parallel Browsing”, that is, it enables
the user to see and browse not only the original data of the entity in focus, but also the K most similar
entities of the focal entity. The similarity of entities is founded on knowledge graph embeddings;
however, the indexes that we introduce for enabling real-time interaction do not depend on the
particular method for computing similarity. We detail an implementation of the approach over
specific subsets of DBpedia (movies, philosophers and others) and we showcase the benefits of
the approach. Finally, we report detailed performance results and we describe several use cases of
RDFsim.

Keywords: similarity; browsing; Semantic Web; DBpedia; entities; embeddings; Linked Data

1. Introduction

There are several access methods over RDF knowledge bases, which can be divided in
structural query language methods, such as SPARQL (https://www.w3.org/TR/sparql11-
query/, accessed on 21 October 2021), keyword search methods, such as [1,2], interactive
information access methods (e.g., [3,4]), and natural language interfaces (e.g., [5]), see
Figure 1 for an overview.

The category of interactive information access services, aims at aiding users to browse
and/or interactively formulate queries in a user friendly manner. This includes plain
browsing of web pages that, for each entity URI, present all triples of that URI as HTML
tables; see for example the pages for Aristotle in DBpedia (https://dbpedia.org/page/
Aristotle, accessed on 21 October 2021) and Wikidata (https://www.wikidata.org/wiki/
Q868, accessed on 21 October 2021). This category also includes faceted search systems [6,7]
and interactive query formulators for RDF data like A-Qub [8].

In this paper, we focus on browsing, since this is a generic interactive access mech-
anism. Sometimes the number of triples of an entity is big, thereby it can result in in-
formation overload; for example, the webpage about Aristotle in DBpedia [9] contains
over 1000 links (!), making it hard for the user to identify the most important informa-
tion. To alleviate this problem in this paper, we investigate a similarity-based browsing
method for RDF data, that allows a user to see only the K most similar entities, offering
in this way a method to tackle the information overload. Instead of designing manu-
ally a similarity function for RDF, we exploit knowledge graph embeddings [10], since

Information 2021, 12, 440. https://doi.org/10.3390/info12110440 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-9616-6210
https://orcid.org/0000-0002-1951-0241
https://orcid.org/0000-0001-8847-2130
https://doi.org/10.3390/info12110440
https://doi.org/10.3390/info12110440
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://dbpedia.org/page/Aristotle
https://dbpedia.org/page/Aristotle
https://www.wikidata.org/wiki/Q868
https://www.wikidata.org/wiki/Q868
https://doi.org/10.3390/info12110440
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12110440?type=check_update&version=1

Information 2021, 12, 440 2 of 25

they could capture similarity more accurately. Apart from tackling information overload,
a similarity-based browsing approach can show to the user entities which are not nec-
essarily directly connected with the current entity. For instance, the page of Socrates (
https://dbpedia.org/page/Socrates, accessed on 21 October 2021) in DBpedia does not
include a link to Homer (https://dbpedia.org/page/Homer, accessed on 21 October 2021),
and vice versa; however, the similarity-based algorithm which is used in this article (more
details are described later) detected these two famous people from Ancient Greece as
similar.

Figure 1. An Overview of Access Methods over RDF.

Although there are various similarity-based services for RDF data, such as KGvec2go
[11] and LODVec [12], where one can find the K most similar entities to a given URI and
the similarity between two different URIs (concepts), to the best of our knowledge there
is no browsing system for RDF data that supports similarity-based browsing (the current
browsing systems [3,4,13] do not support such similarity services).

To support similarity-based browsing, several questions arise, including: (a) how to
present the most similar entities to a given entity; (b) what kind of interaction with these
entities to support; and (c) what kind of indexes are required to enable real-time interaction
(without being dependent on the particular method that is used for computing similarity).

In this paper, we introduce an interactive similarity-based browsing system, called
RDFsim, that offers “parallel browsing”, that is, it enables the user to see and browse not
only the original data of the entity in focus, but also the K most similar entities of the focal
entity in the form of a star-like graph or tagcloud. For example, Figure 2 shows the default
browsing system for the entity “Socrates”: the left frame contains its Wikipedia page, while
the right shows the top-K (default K is 10) similar entities in the form of a graph, and
the user can interact with any of these two frames to change the entity in focus. The
similarity of entities is founded on knowledge graph embeddings. In particular, RDFsim
currently applies the word2vec model [14,15] for computing the embeddings (vectors)
for a set of URIs (i.e., entities), and uses the cosine similarity metric for computing the
similarity between the vectors of two URIs. To enable real-time interaction, which
is indispensable for browsing, we propose and evaluate dedicated indexes that do not
depend on the particular method for computing similarity. The current version of RDFsim is
publicly available (https://demos.isl.ics.forth.gr/RDFsim/, accessed on 21 October 2021)
and offers similarity-based browsing for over 350,000 entities of DBpedia. Regarding
evaluation, we compare RDFsim with existing browsing systems, and we report detailed
performance results. Finally, we discuss use cases that showcase the benefits of the approach
through some real scenarios.

The rest of the paper is organized as follows: Section 2 describes the related work,
Section 3 describes the process of RDFsim for computing and storing the top-K similar
entities using embeddings, whereas Section 4 introduces the process of “Parallel Browsing”.
Section 5 compares the approach with related browsing systems, provides statistics about

https://dbpedia.org/page/Socrates
https://dbpedia.org/page/Socrates
https://dbpedia.org/page/Homer
https://demos.isl.ics.forth.gr/RDFsim/

Information 2021, 12, 440 3 of 25

the datasets supported by RDFsim, and reports performance results. Section 6 discusses
use cases that involve RDFsim, and finally Section 7 concludes the paper and identifies
directions and issues that are worth further research.

Figure 2. The default browsing system of RDFsim for the entity “Socrates”.

2. Related Work

In this section, we discuss access systems for RDF (in Section 2.1), semantic similarity
methods by focusing on systems that exploit RDF knowledge graph embeddings (in
Section 2.2), and the positioning and novelty of RDFsim (in Section 2.3).

2.1. Access Systems over RDF

The access methods over RDF can be categorized as: (a) Structured Query Languages,
(b) Keyword Search, (c) Interactive Information Access, and (d) Natural Language Inter-
faces. This categorization and the characteristics of each case are shown in Figure 1.

Concerning (a), by accessing RDF through query languages such as SPARQL (https:
//www.w3.org/TR/sparql11-query/, accessed on 21 October 2021), it is feasible to express
complex queries through precise and complex criteria. Such languages return exact match
results and offer multi-column responses. There are several systems available offering
data storage and query processing (see a survey [16] for more details). However, they
are more applicable for users that are familiar with such language. Regarding (b), there
exists keyword search approaches [17], where one can submit a set of keywords, and they
return as output the best match entries, which are produced by a sophisticated ranking.
These approaches use several techniques for retrieving the best match results, by exploiting
Information Retrieval (IR) techniques [18,19], and/or by adapting existing IR systems, like
Elasticsearch, to the needs of RDF, for example, see [1,2,20] and others. As regards (c),
there are several interactive information access systems, including browsing systems, such
as [3,4,21] and also systems that can aid users that are not familiar with query languages to
access the RDF knowledge base, for example, faceted search [6,7,13], interactive analytics
services [22,23] and also systems for assisting the query building process, such as the
system A-Qub [8]. Finally, regarding (d) Natural Language interface systems [24], where

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

Information 2021, 12, 440 4 of 25

the input and output is given in natural language, and it returns short and precise answers,
that is, through conversational access and Question Answering systems [25–28].

2.2. Semantic Similarity Methods (Focus on RDF Knowledge Graph Embeddings)

According to [29], there exist several semantic similarity methods, which can be di-
vided into four categories: I) knowledge-based methods, that is, “they calculate semantic
similarity between two terms based on the information derived from one or more underly-
ing knowledge sources, such as ontologies/lexical databases, and others”, II) corpus-based
similarity methods, that is, “they measure semantic similarity between terms using the
information retrieved from large corpora, such as word embeddings”, III) deep neural
network techniques, which exploit state-of-the-art neural networks models for improving
performance, and IV) hybrid methods, which combine methods from at least two of the
previous categories.

2.2.1. Semantic Similarity in Knowledge Bases

The notion of similarity in knowledge bases (Category I), for example, in RDF knowl-
edge bases, has been studied over the past decades, since it is of primary importance for
identifying objects that are similar, but not equivalent. In general, the similarity between
two elements of a Knowledge Base can have several aspects, for example, lexical similarity
(two elements have the same or close name), connectional similarity (they are connected to
the same or similar entities), structural similarity (they have topologically similar structure),
type similarity (they belong to the same/close types, that is, classes), and of course one can
devise similarity measures that capture two or more of the above aspects.

Just indicatively, the authors of [30] proposed a framework for assessing semantic
similarity among instances of a given ontology, while the idea for similarity-based browsing
for Linked Data was first proposed in [31], where the similarity between two entities is
computed based on similarities between the subgraphs of these entities (however, that
work was not applied on large knowledge bases).

2.2.2. RDF Knowledge Graph Embeddings

There is a recent trend for creating RDF knowledge graph embeddings for comput-
ing similarities [10,32]. With respect to the categorization discussed in Section 2.2, such
methods are essentially hybrid since they combine techniques from both Categories I and
II. Specifically, they exploit corpus-based methods for computing the embeddings for RDF
knowledge graphs (instead of texts). In these approaches, the way that sentences are
produced from the KB determines the derived corpus over which the embeddings will be
produced, hence this (i.e., the sentence production) determines what the embeddings-based
similarity really captures. In our case (as it is described in detail in Section 3.2), for an
entity we produce one sentence for each of its triples; consequently, the similarity that it is
calculated is based on the co-occurrence of classes, properties and property-values.

Concerning services exploiting RDF knowledge graph embeddings, KGvec2go [11]
offers an API by exploiting the embeddings trained on four different RDF knowledge
graphs by using the RDF2Vec model [10]. In particular, one can find the similarity between
two different concepts, the K closest concepts to a given one and so forth. Furthermore,
Wembedder [33] is a system that provides the most similar entities for a Wikidata entity
through a web application and a REST API. Moreover, LODVec [12,32] is a tool that
can produce URI sequences and embeddings for a set of given entities, by exploiting
the indexes of LODsyndesis knowledge graph [34]. The main difference between the
mentioned tools and RDFsim is that RDFsim mainly focuses on browsing (and not only on
offering a similarity API).

2.3. The Positioning and Novelty of RDFsim

Concerning access methods, RDFsim belongs to category (c), since it offers an interac-
tive information access system for aiding the user to find similar entities for one or more

Information 2021, 12, 440 5 of 25

URIs (i.e., entities), without requiring from the user to be familiar with query languages
(e.g., SPARQL), nor with the contents of the dataset. Regarding similarity methods, it
belongs to the category of RDF knowledge graph embeddings, that is, it supports func-
tionality similar to the one offered by systems such as KGvec2go [11], Wembedder [33] and
LODVec [12,32], since all these tools can provide the most similar entities to a given one.

Concerning the novelty of RDFsim, to the best of our knowledge RDFsim is the first
browsing system over Knowledge Bases that offers “parallel browsing” (full contents and
top-K entities), and is equipped with dedicated indexes enabling real-time browsing, and
size-configurable visualization methods. The detailed performance experiments and the
online demo showcase the feasibility and generality of the approach.

3. The Process of Computing and Storing the Top-K Similar Entities
Using Embeddings

Here, we describe the first part of RDFsim process, which is illustrated in the upper part
of Figure 3. In particular, we introduce the three steps, for downloading the desired data
from DBpedia (Section 3.1), for computing the top-K similar entities through embeddings
(Section 3.2), and for storing the results in dedicated indexes (Section 3.3). These steps are
described in Algorithm 1, whereas Figure 4 shows a running example, where we create the
embeddings for the entities belonging to the DBpedia class of “Philosophers”.

Algorithm 1: Creating the Entity and the Pointers Index, by using the embed-
dings created from the data of a SPARQL query to DBpedia.

Input: Input query q for downloading the triples from DBpedia SPARQL endpoint
Output: The entity Index ei containing for each entity its prefix, its URI and its top-K

similar entities, and the pointers index pi
/* Step A. Download the triples by using the input query q */

1 triples← downloadDBpediaTriples(q)
/* Step B. Create the embeddings (vectors) for the URIs of the

fetched triples by using word2vec */
2 vecMap← word2vec.skipgram(triples)
// Step C. Create the Indexes by using the produced vectors

3 EntityIndex ei← ∅
// Read each URI of vecMap for creating the Entity Index

4 forall uri ∈ Le f t(vecMap) do
5 entity← su f f ix(uri)

// The top-K most similar entities to uri wrt cos(θ)uri,uri′ score
6 similars(entity, K)← getSimilarEntities(uri, vecMap, K)

// Store the above information to the index
7 ei← ei ∪ {{entity, uri, similars(entity, K)}}
8 ei← ei.sortBySu f f ixLexicographically()
// Create the Pointers Index by using the Entity Index

9 PointersIndex pi← createPointersIndex(ei)
10 Return ei,pi

Information 2021, 12, 440 6 of 25

Figure 3. The two processes of RDFsim.

Figure 4. The process of Finding and Storing the Top-K similar entities through embeddings in
specialized indexes.

Information 2021, 12, 440 7 of 25

3.1. Step A. Configuration and Data Fetching

Rationale. RDFsim downloads data from DBpedia knowledge base [9]. We decided
to use DBpedia since it offers the following benefits: (a) it covers several domains since
it depends on Wikipedia, (b) it provides human readable URIs, that is, the suffixes of its
URIs (the last part of URIs) provide information about the entity being described, whereas
other cross-domain datasets use identifiers as suffixes (e.g., Wikidata), and (c) it offers
deferenceable URIs, that is, by clicking to a URI, one is redirected to its corresponding page
of DBpedia.

The process. The configuration is given in JSON format and should at least include
the SPARQL query for downloading the data from DBpedia. Moreover, the configuration
can include parameters needed for the computation of the embeddings, for example,
the number of dimensions for the vectors to be produced, the minimum frequency of
a word, and others. Concerning Data Fetching, RDFsim downloads the data by sending
SPARQL queries to DBpedia SPARQL endpoint (https://dbpedia.org/sparql, accessed on
21 October 2021) and stores them locally in Ntriples format, that is, see line 1 of Algorithm
1. In our running example (Figure 4), the input is all the triples containing entities of the
class “Philosophers” either as a subject or as an object, whereas these triples contain only
URIs. The corresponding SPARQL query is the following:

SELECT ?s ?p ?o where { ?s rdf:type dbo:Philosopher .
{?s ?p ?o . filter(isURI(?o))} union {?o ?p ?s} }

3.2. Step B. Production of Embeddings for the Fetched Data and Computation of Similar Entities

Rationale. The target is to create a single multidimensional vector for each URI
occurring in the fetched data.

Word2vec model. To generate these vectors, we exploit word2vec, a shallow two-layer
neural network model that uses a single hidden layer for producing word
embeddings [14,15]. The input is a text (in our case triples), while the output is a
multidimensional vector (usually with over a hundred dimensions) for each unique
word (in our case URI) that appears in the text. The vectors it produces are based on
the co-occurrence of words (in our case URIs) in context windows of a given size, and it
aims at grouping the vectors of similar words (based on their co-occurrence) closely in
the vector space. The recommended value of the size of the context window depends on
the word2vec model, for example, in the skip-gram model (which is used by RDFsim),
that value is usually around 10. However, in our case we use a context window of size
3, since for an entity we produce one sentence for each of its triples (i.e., each sentence
contains 3 URIs), which means that we capture similarities based on the co-occurrence
of classes, properties and property-values. The methods for computing the vectors and
the similarity scores are detailed in Sections 3.2.1 and 3.2.2.

Word2vec and alternative options. Although there are several methods for producing
word embeddings, in this work we started from word2vec, since it has been successfully
used over the past years for a large variety of similarity-based applications (e.g., for the
task of entity relatedness and for machine learning-based tasks) over RDF knowledge bases
(including DBpedia), for example, see [10,32]. However, later in this paper (in Section 3.4),
we describe how the proposed approach could be adjusted for hosting similarity results
that are produced by other similarity methods as well.

3.2.1. Step B1. Computation of URI Embeddings

Here, we describe the text corpus that we use and the process that is followed for
computing the embeddings.

Text Corpus. We do not use any pre-trained word2vec vocabulary for computing the
embeddings. In particular, our text corpus is derived by the input triples (from Step A),
and we train the model by using the mentioned triples. We consider each URI, for example,
“dbp:Aristotle” or “dbp:Western_Philosophy”, as a single word, and we consider each

https://dbpedia.org/sparql

Information 2021, 12, 440 8 of 25

RDF triple as a sentence (a sequence of URIs), for example, “dbp:Aristotle, dbp:bornIn,
dbp:Stagera” is a URI sequence containing three URIs. At the time being, we use triples
containing only URIs (see Step B1 of Figure 4), and not triples including literals or blank
nodes, since such cases require a more complicated approach (e.g., more details are given
in [35]), we plan to investigate such cases in the future.

Skip-gram model. For computing the embeddings, we use the skip-gram model of
word2vec [14,15]. We decided to use this model instead of the Continuous-Bag-of-Word
(CBOW) model of word2vec, since in most cases Skip-gram outperforms CBOW for large
RDF datasets (including DBpedia) [10,32]. Skip-gram model uses unsupervised learning
techniques for finding the most related words (in our case URIs) for a given word, that
is, it uses a target word for predicting the context words. For instance, in the upper
right side of Figure 4, the target URI is “dbp:Aristotle” and some of the context URIs (for
“dbp:Aristotle”) are “dbp:Plato” and “dbp:Thales”.

In particular, given a sequence of training URIs (words), say uri1, uri2, ..., uriT , and a
context window of size c, the skip-gram model tries to maximize the average log probability,
which follows:

1
T

T

∑
t=1

∑
−c≤j≤c,j 6=0

log p(urit+j|urit). (1)

The probability p(urit+j|urit) is computed using the softmax function:

p(urit+c|urit) =
exp(v′Turit+c

vurit)

∑
|U|
m=1 exp(v′Turim vurit)

. (2)

In the above formula, v′ and v are the input and the output vectors of a URI uri,
whereas |U| is the number of unique URIs in our vocabulary (text corpus).

3.2.2. Step B2. Production of Vectors for the URIs and Computation of Similar Entities

After the training phase, each URI uri is mapped into a vector v′uri (see line 2 in
Algorithm 1), and we store all these vectors. In particular, we use a map, called vecMap,
which is essentially a function vecMap : U → VEC, where U denotes all the trained URIs,
VEC all the produced vectors, and vecMap(uri) = v′uri (e.g., see Step B2 of Figure 4). The
key point is that semantically similar URIs are placed to close positions in the vector space,
for example, see an example in Step B2 of Figure 4 for the URIs “dbp:Aristotle”-“dbp:Plato”
and the URIs “dbp:Western_Philosophy”-“Ancient_Greek_Philosophy”.

We should note that the URIs (in our vocabulary) can belong to different RDF classes,
that is, “dbp:Aristotle” belongs to the class of “dbo:Philosopher”, while “dbp:Stagera”
belongs to the class of “dbo:City”. Therefore, it is possible for entities belonging to different
classes, such as “dbp:Aristotle” and “dbp:Stagera”, to be detected as similar through
Skip-gram model.

Similarity Method for computing the K most similar entities. For finding the K
most similar entities to a given entity, we employ the cosine similarity score of their vectors.
The cosine similarity between two vectors v′uri1

and v′(uri2) (each vector correspond to a
single URI) is defined as:

cos(θ)uri1,uri2 =
v′uri1

· v′uri2
‖v′uri1

‖‖v′uri2
‖ . (3)

The score ranges from -1 (i.e., two vectors are exactly opposite) to 1 (i.e., two vectors
are exactly the same). To compute the K most similar entities to a given URI uri, we rank
the rest URIs according to their cos(θ)uri,uri′ score in descending order, and we keep the
URIs placed in the first K positions in the ranking (i.e., the K most similar URIs to uri).

Information 2021, 12, 440 9 of 25

Implementation. For the computation of embeddings and of the cosine similarity
scores between the URIs, RDFsim uses the word2vec DL4J API (https://deeplearning4j.org/,
accessed on 21 October 2021).

3.3. Step C. The Indexing Process

Rationale. The computation of embeddings and of similarity scores between the
URIs usually need high main memory requirements. To support fast browsing and avoid
recomputing similarity scores we store the top-K similar entities of each entity in specialized
indexes. Afterwards, we use only these indexes for offering “parallel browsing”, that is,
there is no need to store (either in main memory or on disc) the produced embeddings (i.e.,
computed in Step B). Therefore, for tackling performance requirements and for offering
real-time interaction, we create the following two indexes: (a) the Entity Index and (b) the
Pointers Index, that is, see lines 3–10 of Algorithm 1.

Entity Index. It is a Random Access file containing a single entry for each URI (or
entity), by exploiting the results of the embeddings. The process is described in lines 3–8
of Algorithm 1. Firstly, we read each URI (see line 4) for which a vector was produced in
the previous step (with Le f t(r) we denote the set of elements that occur in the left side of
a function r). Afterwards, for each URI (i.e., entity), we store as a key its suffix (i.e., the
last part of the URI), the whole URI, its top-K similar entities (i.e., similars(e, K) in line 6
of Algorithm 1), and their corresponding similarity score (computed by using the vectors
of vecMap and the cosine similarity metric). An example can be seen in the lower side of
Figure 4, where we have stored the above information for some entities. The top-K similar
entities of each entity are stored in descending order according to their cosine similarity
score, whereas the entities of Entity Index are stored in lexicographical order (according to
their suffix).

Pointers Index. For being able to offer faster responses, we use this index for creating
some pointers to specific positions of Entity Index (see lines 9–10 of Algorithm 1). Indeed,
Pointers Index can store a single pointer for a specific word prefix. Since Entity Index has
been sorted in lexicographical order, it can store a pointer according to a given policy,
for example, for each distinct character, for the first two characters, and so forth, as in
[36], depending on the scalability requirements. For example, in our running example of
Figure 4, the pointer of the letter ’A’ points to the first entity whose suffix starts with ’A’.
These indexes are exploited for offering “Parallel Browsing”, as is described in Section 4.

3.4. How Can the Process Be Adjusted to Other Datasets or Similarity Methods?

The described process can be easily adjusted to datasets having suffixes containing
a surface form of the concept, such as DBpedia. On the contrary, for other datasets, such
as Wikidata, which use identifiers as suffixes, one possible solution is to perform the same
process in Steps A and B, and afterwards to store in the index the label of each URI, instead
of its suffix. Our plan is to investigate methods for supporting this kind of dataset in
the future.

Concerning different methods for computing similarity, it is worth noting that the
produced index stores the K most similar entities to a given entity, that is, the index does
not depend on the particular method for computing similarity. Therefore, one could use
the indexes of RDFsim for storing the similar entities as computed by different embeddings
models, such as BERT [37], GloVE [38], FastText [39], and others. In such scenarios, steps
A and B could be skipped and the precomputed similarity results could only be used for
producing the indexes.

4. The Process of “Parallel Browsing”

This section describes the second part of the RDFsim process (lower part of Figure 3),
that is, the process of “Parallel Browsing” that enables the user to browse both the original
data of the focal entity, and the K most similar entities of that entity. To enable real
time interaction, this process exploits the indexes produced in Step C (Section 3.3). In

https://deeplearning4j.org/

Information 2021, 12, 440 10 of 25

brief, Section 4.1 describes the selection of the first entity, Section 4.2 describes the frames,
Section 4.3 describes the methods/algorithms used for retrieving and visualizing the data,
and Section 4.4 provides details about the implementation and the current version of
RDFsim.

4.1. Landing Page and Finding the First Entity

The first page of RDFsim web application contains a search form, where the user can
type either a URI or a keyword which corresponds to an entity, whereas through a select
box the user can select which dataset to use (e.g., “Philosophers”,“Movies”, etc). To aid
users in finding the desired entity, RDFsim offers an auto-complete mechanism. An example
is shown in the upper side of Figure 5, where the input keyword is “Aristotle” and the
selected dataset is “DBpedia Philosophers”.

4.2. The Frames of “Parallel Browsing”

After selecting the focal entity esel , the user is redirected to a new page, where “Parallel
Browsing” is offered for that entity. This page is divided into two different frames (or
parts), as is depicted in Figure 5. In the left frame, RDFsim shows the original data of esel ,
in three possible modes: (i) Wikipedia page mode (default), where the user explores the
Wikipedia page of esel , (ii) DBpedia page mode, where the user browses the DBpedia page
of esel , and (iii) triples-mode, where the user can browse all the triples where esel occurs
either as a subject or as an object. In the right frame, the user can see the top-K (K is
configurable) most similar entities to esel through either a graph visualization (e.g., see the
graphs in Figure 5) or a tagCloud visualization (e.g., see the lower right side of Figure 5).

By clicking to an entity either in the left frame (only in triples mode) or in the right
frame, RDFsim will refresh the page for showing the corresponding information for the new
selected entity.

4.3. Constructing the Browsing Frames

Here, we describe the methods for retrieving the data for the selected entity esel , and
for constructing the two browsing frames.

4.3.1. Finding the Selected Entity in the Index

Since in our index we store the entities according to their suffix, in case that the input is
a URI, we just keep its suffix. Afterwards, we use the Pointers Index for retrieving the entity
esel from the Entity Index. In our running example, where esel =“Aristotle”, we find its first
letter (i.e., ’A’), we find the pointer of this character in the Pointers Index, and we read the
Entity Index starting from that pointer for finding esel . For offering faster responses, we use
binary search for finding and retrieving the line containing the data of the given entity.

4.3.2. Constructing the Left Frame of RDFsim Web Page

For any selected mode of the left frame, we retrieve from the Entity Index only the URI
of esel . For Wikipedia or DBpedia page mode, we use that URI for finding the corresponding
URL of that pages and for showing them to the left frame of RDFsim. On the contrary, for
the triples mode, we send a SPARQL query to DBpedia SPARQL endpoint for retrieving
dynamically all the triples containing the URI of esel either as a subject or as an object.

Information 2021, 12, 440 11 of 25

Figure 5. Parallel Browsing for the selected entity Aristotle.

4.3.3. Constructing the Right Frame of RDFsim Web Page

The right frame of the web application supports two visualizations for the similarity-
based browsing, which are analyzed below.

A. Similarity Graph Visualization. RDFsim constructs a similarity graph for visualiz-
ing the K most similar entities to esel and the cosine similarity score between the URI of
esel and the URI of each similar entity of esel . Moreover, it can construct larger similarity
graphs by using a parameter L, which denotes the maximum depth that the graph can
have, that is, the number of edges in the longest path of the graph. For a given L (L ≥ 1),
the graph contains at most L + 1 levels, where the first level contains the selected entity
esel , the second level the top-K most similar entities of esel , that is, similars(esel , K), the third
level the top-K similar entities of each similar entity of esel , that is, similars(e′, K), where
e′ ∈ similars(esel , K), and so forth.

The default values are K = 10 and L = 1, that is, the graph contains the top-10 similar
entities for the selected entity esel (see the first graph in the right side of Figure 5). On

Information 2021, 12, 440 12 of 25

the contrary, by increasing the value of L, one can browse more complex similarities, for
example, to see which entities belong to the top-K similar entities for both “Aristotle” and
“Socrates” (see the second graph in the right side of Figure 5). Below, we describe how to
construct such graphs.

Construction of Similarity Graph. For constructing this graph we use a Breadth-First
Search (BFS)-like algorithm (see Algorithm 2), which is analyzed below.

Input. It receives as input the selected entity esel and two parameters, that is, K (the
number of the top-K most similar entities) and L (the maximum depth of the graph).

Output. The output is a similarity graph G having a depth of at most L, where two
nodes (or entities) e, e′ are connected with a labelled edge when e′ ∈ similars(e, K) or
e ∈ similars(e′, K). The label of each edge represents the cosine similarity score between
the URIs of each pair of entities.

Algorithm 2: Creating the similarity graph G for the selected entity esel .
Input: Entity esel , depth L, number of similars K, Entity Index ei
Output: The similarity graph starting G from entity e by using specific L and K

// Initialize Graph
1 Graph G{
2 V ← ∅,
3 E← ∅
4 }
5 level ← 1
6 V(level)← ∅
// Add the selected entity as the first node

7 G.V ← G.V ∪ {esel}
8 V(level)← V(level) ∪ {esel}
// Follow a BFS-like approach

9 while level ≤ L and V(level) 6= ∅ do
10 V(level + 1)← ∅

// Traverse each node e of the current level
11 forall e ∈ V(level) do
12 similars(e, K)← ei.getSimilarEntities(e, K)

/* Traverse the top-K to similar entities of v and create the
corresponding nodes/edges (if they do not exist) */

13 forall e′ ∈ similars(e, K) do
14 if e′ /∈ G.V then
15 G.V ← V ∪ {e′}
16 G.E← G.E ∪ {e, e′}
17 V(level + 1)← V(level + 1) ∪ {e′}
18 else if {e, e′} /∈ G.E then
19 G.E← G.E ∪ {e, e′}
20 level ← level + 1
21 Return G

The Steps of Algorithm 2. The first step is to initialize the graph (lines 1–4 of Algorithm 2).
Afterwards, we denote as level the current level of the graph (i.e., level 1 contains the
selected entity), and we use a queue V(level) for storing the nodes of the current level.
Moreover, we add to the graph nodes, and to the nodes of the current level the desired
entity esel (lines 5–8). The algorithm uses a while loop, which stops either when the level
becomes larger than L or when the queue of the current level is empty (lines 9–20). For
each node e of a given level, Algorithm 2 retrieves each e′ ∈ similars(e, K) by exploiting
the Entity Index (and the Pointers Index). For each e′, we check if we have created a node for
this entity. If this is not the case (see lines 14–17), we create a new node for e′ and an edge
between e and e′, and we add this node to the queue of the next level. On the contrary, if
the node e′ exists (see lines 18–19), we just add an edge between e and e′. Afterwards, we

Information 2021, 12, 440 13 of 25

move to the next level when the same process is repeated (line 20). In the end, Algorithm 2
returns the produced similarity graph (line 21).

Example. In Figure 6, we can see an example where the selected entity is “Socrates”,
and the parameters are K = 2 and L = 2. In this example, the number near to each node
indicates the “construction” order of nodes. Indeed, the first node is created for “Socrates”.
In the first iteration, it creates the nodes for the second level, that is, the nodes for the top-2
similar entities of “Socrates”. In the second iteration, the target is to create the nodes for
the top-2 similar entities of “Aristotle” and “Zeno of Citrium” (i.e., for the third level). For
“Aristotle”, its top-2 similar entities are “Socrates” and “Plato”. However, since we have
already created a node for “Socrates”, a new node and an edge is created only for “Plato”.
Concerning the entity “Zeno of Citrium”, since “Cleanthes” and “Chrysippus” (its top-2
similar entities) are not part of the similarity graph, a new node and an edge is created
between each of them and “Zeno of Citrium”. For distinguishing such cases, we use two
different types of edges, as is explained below.

Figure 6. Constructing the Similarity Graph for “Socrates” with parameters K = 2 and L = 2.

Distinguish different Similarity Cases by using different types of Edges. As we have seen in
Figure 6, there are two different cases for two entities e and e′ in the produced similarity
graph. In case that e′ ∈ similars(e, K) and e /∈ similars(e′, K) we use a directed edge from
e to e′. For instance, in Figure 6 “Zeno of Citrium” belongs to the top-2 similar entities
of Socrates, but “Socrates” does not belong to the top-2 similars of “Zeno of Citrium”,
thereby we use a directed edge from “Socrates” to “Zeno of Citrium”. On the contrary, if
e′ ∈ similars(e, K) and e ∈ similars(e′, K) , we use an undirected edge between such pairs
of entities. In Figure 6, this is the case between the entities “Aristotle” and “Socrates”, that
is, in the index of Figure 6 that “Aristotle” belongs to the top-2 similar entities of “Socrates”
and viceversa. In the most extreme case, it holds for every possible pair of entities, for
example, see the example for “Toy_Story” entity in Figure 7 for K = 3 and L = 3, where all
the edges are undirected.

Figure 7. The resulting Similarity Graph for “Toy Story” Movie with parameters K = 3 and L = 3.

Number of Edges and Nodes. The number of edges in the worst case for a given depth
L and a given K is |EL,K| = ∑

|L|
l=1 |K|

l edges, that is, for a given l (where 1 ≤ l ≤ |L|), |K|l
edges can be created. Concerning the nodes, in the worst case, one node is created when
a new edge is created, except for the root node, therefore, the largest possible number of

Information 2021, 12, 440 14 of 25

nodes is |VL,K| = |EL,K|+ 1. However, as we have seen there are cases for two entities e
and e′ where e ∈ similars(e′, K) and e′ ∈ similars(e, K), for example, see Figure 7. In such
cases the number of nodes and edges can be highly reduced, for example, in the example
of Figure 7, only four nodes and six edges were created, although the worst case for K = 3
and L = 3 corresponds to 40 nodes and 39 edges.

Time and Space Complexity. For each entity, we access the Entity Index for finding its
entry. In the worst case, for each node (i.e., entity) of the graph we perform a binary
search in the whole file, that is, we need |VL,K| ∗ log|Ent| iterations, where |Ent| denotes
the number of entries in Entity Index. Since we follow a breadth-first approach, the time
complexity is O(|VL,K| ∗ log|Ent| + |EL,K|). Concerning the required space, we keep in
memory both the nodes and edges, therefore, space complexity is O(|VL,K|+ |EL,K|).

What values of K and L to use? As K increases, less similar entities will appear (regardless
of the size of L), since the similar entities to an entity are ranked according to their cosine
similarity score in descending order. Nevertheless, the user is free to increase or decrease
this value as he/she wishes to. As regards L, when it increases, the graph will grow
faster (especially for large values of K), and will contain many long paths, making the
visualization of the graph less readable. However, an L value greater than one can be useful
in cases where the user is not familiar with one similar entity, and L > 1 will show entities
about that entity facilitating the user to understand the context of that entity. Again, the
user is free to increase or decrease this value as he/she wishes to.

B. Tag Cloud Visualization. RDFsim also supports an interactive tagCloud visualiza-
tion where the selected entity is displayed with the largest font, whereas the font size of
each other entity indicates how similar that entity is to esel , for example, Figure 8 shows
the top-10 similar entities for the entity “History”. By clicking an entity in the tagCloud
visualization, RDFsim refreshes the page for showing the corresponding information for
that entity. In this visualization, the user can again select the desired K, but he/she cannot
configure L. In the future, we plan to evaluate also alternative visualization methods for
showing more values in less space, while making evident the most similar entities, for
example, the recently introduced Concentric Spiral layout described in [40]. Is is also worth
enriching the graph with schema information, for example, the class of each displayed
entity, for making its context clearer.

Figure 8. TagCloud visualization for the 10 most similar entities to the entity “History”.

4.4. Implementation and Current Online Version of RDFsim

RDFsim is a web system implemented using standard technologies. The back-end is
based on JSP and JAVA Servlets, while the front-end uses JavaScript, jQuery, AJAX and for
visualizing the similarities through graphs or tagCloud visualizations, it uses the JavaScript

Information 2021, 12, 440 15 of 25

libraries vis.js (https://visjs.org/, accessed on 21 October 2021) and anychart.js (https:
//docs.anychart.com/Basic_Charts/Tag_Cloud, accessed on 21 October 2021), respectively.

The current deployment of RDFsim, that is accessible online (https://demos.isl.ics.
forth.gr/RDFsim/, accessed on 21 October 2021), provides parallel browsing for a subset
of DBpedia containing information about Philosophers, Programming Languages, Video
Games and Movies (statistics are given in Section 5), and runs in a machine with two cores,
2GB RAM and 20GB disc space.

5. Evaluation

Here, in Section 5.1, we compare RDFsim with existing browsing systems, whereas in
Section 5.2 we provide detailed performance results for RDFsim.

5.1. Comparison with Related Systems

Here, we compare some popular RDF browsing systems (see Table 1) with RDFsim.
The dimensions that we use are analyzed below. Specifically, (a) Data Import denotes the
way that each browsing system uses for retrieving/processing the data, which can be a
SPARQL query, an RDF dump, and so forth, where (b) User Input denotes the input which
is given by the user for searching about an entity, for example, a URI, a keyword/label
and so on. Moreover, (c) Output, denotes the output which is shown to the user, which
can be either a HTML table or/and a visualization (e.g., a graph visualization), whereas
we mention (d) the method for creating the HTML pages, that is, they can be dynamic, for
example, the desired pages are produced at runtime when requested, therefore there is no
need to store something, or pre-computed, for example, all web pages produced at once,
which can result in a huge number of pages, and pages are difficult to update. Moreover,
we mention (e) which Datasets are supported by each tool, and (f) the Paths between the
entities that can be browsed. These paths are divided into single-paths (i.e., direct triples)
or larger paths. Furthermore, we provide information about (g) the Input Data that each
system uses, that is, KB-data, which corresponds to data derived from a knowledge base
(KB), or/and embeddings, that is, data derived after applying an embedding method.
Finally, we mention whether each system uses (h) Facets for aiding the users to restrict the
results. Below, we describe each system and in the end we mention the major differences
with RDFsim. Moreover, we provide a link to “Aristotle” entity for each browsing system.
The link of RDFsim for Aristotle can be accessed online (https://demos.isl.ics.forth.gr/
RDFsim/SearchServlet?entity=Aristotle&dataset=dbpedia_philosophers, accessed on 21
October 2021).

Table 1. Comparison of Browsing Systems.

Browsing
System Data Import User Input Output HTML

pages
Datasets

Supported Paths Based on
Data Facets

RDFsim SPARQL
query

URI +
Keywords

Tables +
Visual Dynamic DBpedia Triples +

Larger Paths
KB-Data,

embeddings No

DBpedia [9]
Browser

SPARQL
query URI Tables Dynamic DBpedia Triples KB-Data No

Wikidata [41]
Browser

SPARQL
query URI Tables Dynamic Wikidata Triples KB-Data No

LODlive [3] SPARQL
query

URI +
Keywords

Tables +
Visual. Dynamic Any Dataset Triples +

Larger Paths KB-Data Yes

LODmilla [4] SPARQL
query

URI +
Keywords

Tables +
Visual. Dynamic Any Dataset Triples +

Larger Paths KB-Data Yes

RDF surveyor
[21]

SPARQL
query Keywords Tables +

Visual. Dynamic Any Dataset Triples KB-Data Yes

DBpedia and Wikidata Browsers. They show the direct triples that each entity occurs
(either as a subject or as an object) by using HTML tables, derived from the DBpedia (

https://visjs.org/
https://docs.anychart.com/Basic_Charts/Tag_Cloud
https://docs.anychart.com/Basic_Charts/Tag_Cloud
https://demos.isl.ics.forth.gr/RDFsim/
https://demos.isl.ics.forth.gr/RDFsim/
https://demos.isl.ics.forth.gr/RDFsim/SearchServlet?entity=Aristotle&dataset=dbpedia_philosophers
https://demos.isl.ics.forth.gr/RDFsim/SearchServlet?entity=Aristotle&dataset=dbpedia_philosophers
https://dbpedia.org/page/Aristotle
https://dbpedia.org/page/Aristotle
https://dbpedia.org/page/Aristotle

Information 2021, 12, 440 16 of 25

https://dbpedia.org/page/Aristotle, accessed on 21 October 2021) and the Wikidata (
https://www.wikidata.org/wiki/Q868, accessed on 21 October 2021) knowledge base,
respectively.

LODLive Browser [3]. It offers a graphical representation for exploring either the di-
rect neighbour of each entity, or even larger paths. Specifically, by using LODlive [3] it is
feasible to browse data for any SPARQL endpoint, whereas it can link resources from dif-
ferent SPARQL endpoints for discovering new connections. For each resource (i.e., URI)
one can browse through a dynamic visual graph of its direct, inverse and owl:sameAs
relations, its datatype and object type properties. An example can be accessed online
(http://en.lodlive.it/?http://dbpedia.org/resource/Aristotle, accessed on 21 October 2021).

LODmilla Browser [4]. It can receive any dereferenceable URIs or a SPARQL endpoint.
It provides a visual representation (i.e., a graph) of multiple resources and properties,
and offers several options such as searching in the resources and the graph, finding paths
between resources, saving and sharing graph views and others. An example is accessible
online (https://lodmilla.sztaki.hu/lodmilla/?url=http://dbpedia.org/resource/Aristotle,
accessed on 21 October 2021).

RDF surveyor [21]. It can receive any SPARQL endpoint as input, and it offers a
class navigation browsing. One can restrict the results by clicking to a specific RDF
class for browsing the data for an entity. For a selected entity, the user can see its URI,
its label and comment, the corresponding class types, datatype properties, and direct
and inverse object properties. Moreover, the tool is capable of showing a picture and a
map location (in case these information are available). An example can be accessed on-
line (http://tools.sirius-labs.no/rdfsurveyor/?repo=http://dbpedia.org/sparql&graph=
http://dbpedia.org&indiv=http://dbpedia.org/resource/Aristotle, accessed on 21 Octo-
ber 2021).

Comparison with RDFsim. All the above tools offer a dynamic way to browse data
from SPARQL endpoints. Concerning commonalities with RDFsim most tools provide
visualizations of data and exploration of large paths. On the contrary, most of them can
support any given dataset (that offers a SPARQL endpoint), which is also a future target of
RDFsim, whereas some tools provide facets for restricting the results. In comparison to the
above tools, RDFsim is the only system that offers “parallel” browsing for the entities, by
showing both the triples and the K most similar entities to a given entity.

5.2. Efficiency and Similarity Measurements

Here, in Section 5.2.1 we first describe the datasets (and statistics) that the current
version of RDFsim supports, Section 5.2.2 introduces efficiency results, whereas Section 5.2.3
provides some indicative similarity measurements for these datasets. The experiments
have been performed in a single machine with four cores, 8 GB main memory and 256
GB disc space. The code for reproducing the experiments is accessible online (https:
//github.com/MChatzakis/RDFsim-PublicVersion, accessed on 21 October 2021).

5.2.1. Datasets and Indexes of RDFsim

Table 2 describes the datasets that RDFsim supports in ascending order with respect
to the number of triples (and their size on disc) that each dataset contains. Moreover, it
introduces statistics about the resulted Entity Index of each dataset, that is, the number
of entries and the size of index on disc. The four DBpedia datasets supported by RDFsim
include information about Philosophers, Programming Languages, Video Games and
Movies. The produced indexes contain in total 345 thousands entries (i.e., each entry
corresponds to a single entity), whereas they require 699 MB disc space.

https://dbpedia.org/page/Aristotle
https://dbpedia.org/page/Aristotle
https://www.wikidata.org/wiki/Q868
https://www.wikidata.org/wiki/Q868
http://en.lodlive.it/?http://dbpedia.org/resource/Aristotle
https://lodmilla.sztaki.hu/lodmilla/?url=http://dbpedia.org/resource/Aristotle
http://tools.sirius-labs.no/rdfsurveyor/?repo=http://dbpedia.org/sparql&graph=http://dbpedia.org&indiv=http://dbpedia.org/resource/Aristotle
http://tools.sirius-labs.no/rdfsurveyor/?repo=http://dbpedia.org/sparql&graph=http://dbpedia.org&indiv=http://dbpedia.org/resource/Aristotle
https://github.com/MChatzakis/RDFsim-PublicVersion
https://github.com/MChatzakis/RDFsim-PublicVersion

Information 2021, 12, 440 17 of 25

Table 2. Datasets supported by RDFsim.

DBpedia
Dataset

Number of
Triples

Triples Size
(MB)

Number of
Entity Index

Entries

Entity Index
Size (MB)

Philosophers 47,425 6.1 MB 804 1.8 MB

Programming
Languages 100,070 13.2 MB 2661 5.2 MB

Video Games 3,089,559 423.0 MB 58,257 118.0 MB

Movies 13,512,335 1780.0 MB 284,062 574.0 MB

Total 16,749,389 2222.3 MB 345,784 699.0 MB

As we can observe, for each dataset, the size of the corresponding index is quite
smaller in comparison to the size of its triples. In particular, in all cases it is less than half of
the triples’ size, since we store only the desired information about the similarities of each
entity.

5.2.2. Efficiency Measurements

Here, we provide some measurements about the efficiency of RDFsim. We provide re-
sults for the execution time i) for creating the embeddings and the indexes, ii) for retrieving
the desired data for the default case, that is, for browsing the top-10 similar entities to an
entity, and iii) cases when larger similarity graphs are created.

Measurements for the Creation of Embeddings and Indexes. Here, we measure the
execution time for creating the embeddings and the indexes. Based on the literature for
RDF knowledge graph embeddings [10,32], we selected the following parameters for the
skip-gram model of word2vec: minwordFrequency = 5, that is, the minimum number of
times a URI must appear in the corpus (e.g., in our case if a URI appears less than five times,
it is not learned), window size = 3, that is, the context window, iter = 10, that is, number
of iterations over the text corpus, and layersize = 200, that is, the number of dimensions
of each vector. Table 3 introduces the results for each dataset, that is, for creating the
embeddings we needed from 5.8 s to 38.9 m, whereas for the indexes, 5.3 s to 7.6 h. For
both tasks, we needed from 11.1 s to 8 h. In total, 8.9 h were needed for all the datasets
to complete all the tasks. Although this process can be time-consuming for large datasets
(e.g., 32 min for Video Games and 8 h for Movies), it is performed only once, that is, for
offering similarity-based browsing, we just need the produced indexes of this process.

Table 3. Execution Time (in seconds) for creating the embeddings and the indexes.

DBpedia Dataset Embeddings
Creation Time

Indexing Creation
Time Total Time

Philosophers 5.8 s 5.3 s 11.1 s

Programming
Languages 11.1 s 16.6 s 27.1 s

Video Games 535.8 s 1408.4 s 1944.2 s

Movies 2338.3 s 27,716.6 s 30,054.9 s

Total 2891.0 s 29,146.9 s 32,037.3 s

Measurements for the Default Similarity Graph. Table 4 presents the results for the
average response time of retrieving the desired data for an entity from Entity Index and for
creating the default graph containing its top-10 similar entities. As we can see, as the size
of a dataset grows, the execution time increases. However, by using the Pointers Index the
average time is quite low even for larger datasets, for example, for Movies (i.e., the largest
dataset) RDFsim needs on average 0.13 s to show to the user the resulting page for an entity.

Information 2021, 12, 440 18 of 25

Finally, the gain of using a random access (through Pointers Index) instead of a sequential
access is obvious, that is, the speedup varies from 11.4× to 16.71× for the four different
DBpedia datasets.

Table 4. Average execution time (in seconds) for retrieving the desired data for an entity and for
creating its default similarity graph.

DBpedia Dataset
Browse

Entity-Sequential
Access

Browse
Entity-Random

Access

Speedup from
Random Access

Philosophers 0.00502 s 0.00044 s 11.40×

Programming
Languages 0.01756 s 0.00132 s 13.30×

Video Games 0.37720 s 0.02257 s 16.71×

Movies 1.98209 s 0.13247 s 14.96×

Measurements for Similarity Graphs Containing Larger Paths. Here, we measure
the time for creating larger similarity graphs for different values of K and L, for each of
the four DBpedia datasets. For performing these measurements, we randomly selected
ten entities from each dataset, and we computed the average time to create the desired
similarity graph. We present one figure for each different value of K, that is, Figure 9 for
K = 1, Figure 10 for K = 5, Figure 11 for K = 10 and Figure 12 for K = 15.

Concerning the results, for a small value of K, that is, K = 1 or K = 5 (i.e.,
Figures 9 and 10), the similarity graph is created quite fast when L ≤ 4. However,
due to the exponential nature of the algorithm concerning the number of nodes and
edges (see Section 4.3), the execution time can be very high as the depth L increases,
especially for large values of K and large datasets. For example, for the dataset of Movies
the execution time highly increases when L and K grows (i.e., when larger paths are
created), for example, for K = 10 and L = 4 the execution time was 62 s (see Figure 11),
whereas the corresponding time for K = 15 and L = 4 was 149 s (see Figure 12).

Figure 9. Average time for creating the similarity graph for K = 1.

Information 2021, 12, 440 19 of 25

Figure 10. Average time for creating the similarity graph for K = 5.

Figure 11. Average time for creating the similarity graph for K = 10.

Figure 12. Average time for creating the similarity graph for K = 15.

Information 2021, 12, 440 20 of 25

5.2.3. Indicative Measurements for the Results of the Embeddings

Here, we provide some indicative measurements for evaluating the results of the
embeddings. Since the evaluation of embeddings process requires a further analysis (which
is one of our future targets), that is, to compare the results by using different parameters
and specialized evaluation collections; here, we introduce some indicative results for two
specific entities, that is, for the entities “Aristotle” and “Python Programming Language”
from the datasets of “Philosophers” and “Programming Languages”, respectively.

What we measure. We measure the number of entities in the top-K similar entities of
each entity that are not directly connected and the common values among two entities.

Similar but not Neighbors. Remember that for a single entity e, we denote as similars(e, K)
the entities belonging to its top-K. Moreover, as similars(e, K)Conn we denote the set of enti-
ties belonging to the top-K similar entities of e and there is a direct connection between e and
each of them (through a triple), that is, similars(E, K)Conn = {e′ ∈ similars(e, K) | 〈e, p, e′〉 ∈
T or 〈e′, p, e〉 ∈ T }, where T is the set of triples. On the contrary, we denote as
similars(e, K)noConn, the similar entities that are not connected with a triple, that is,
similars(e, K)noConn = similars(e, K) \ similars(e, K)Conn.

For computing these sets, we send the following SPARQL queries between the focused
entity e and each of the entities e′ ∈ similars(e, K): “ASK WHERE {e ?p e′}” and “ASK
WHERE {e′ ?p e}”. If both queries return false, it means that these two entities are not
connected through a triple (i.e., e′ ∈ similars(e, K)noConn).

Common Values. For each pair containing entity e and each e′ ∈ similars(e, K),
we measure the number of common subject-predicate pairs, where commonSP(e, e′) =
{{p, o} | 〈e, p, o〉 ∈ T and 〈e′, p, o〉 ∈ T} and predicate-object pairs, where
commonPO(e, e′) = {{s, p} | 〈s, p, e〉 ∈ T and 〈s, p, e′〉 ∈ T}. For computing commonSP(e, e′)
we send the SPARQL query “Select count(*) WHERE {e′ ?p ?o . e ?p ?o}” whereas the corre-
sponding SPARQL query for commonPO(e, e′) is the following: “Select count(*) WHERE
{ ?s ?p e′ . ?s ?p e}”. In the end, we sum the cardinality of these two results for finding
the number of common values between these two entities, that is, |commonValues(e, e′)| =
|commonSP(e, e′)|+ |commonPO(e, e′)|.

Indicative Results. Table 5 shows the results for Aristotle, whereas Table 6 for “Python
programming language”, respectively. As we can see, in both cases most of their similar
entities are also their direct neighbours, that is, six out of ten cases for “Aristotle” and eight
out of ten cases for “Python”. On the contrary, there are entities belonging to their top-10
similar entities, and there is not a direct connection between them and the desired entity,
for example, “Diogenes Laertius”, “Open source software”, and so forth. However, these
entities share several common values with the desired entities, for example, “Diogenes
Laertius” share 173 common values with “Aristotle” and “Open-source software” share
1048 common values with “Python programming language”.

Information 2021, 12, 440 21 of 25

Table 5. Similarity Measurements for the top-10 similar entities to Aristotle.

Position Entity e′ Sim. Score e′ belongs to
similars(e, K)Conn

|commonValues(e, e′)|

1 Plato 0.53 3084

2 Socrates 0.51 984

3 Ancient Greek
philosophy 0.47 586

4 Cicero 0.46 810

5 Platonism 0.46 304

6 Arcesilaus 0.45 50

7 Diogenes Laertius 0.45 173

8 Athens 0.43 710

9 Zeno of Citium 0.42 158

10 Universal
(metaphysics) 0.42 114

Table 6. Similarity Measurements for the top-10 similar entities to Python Programming Language.

Position Entity e′ Sim. Score e′ belongs to
similars(e, K)Conn

|commonValues(e, e′)|

1 Java 0.59 2386

2 Ruby 0.57 1450

3 Compiler 0.56 478

4 Open-source
software 0.55 1048

5 Object-oriented
programming 0.55 502

6 C++ 0.54 1508

7 C Sharp 0.54 1270

8 Graphical user
interface 0.53 602

9 Reflective
programming 0.53 124

10 BASIC 0.50 260

6. Use Cases

Here, we describe three use cases of RDFsim similarity browsing, by using real exam-
ples (taken from RDFsim), for illustrating the functionality of RDFsim.

6.1. Use Case 1. “Parallel Browsing” of the Entity in Focus

Suppose that a user desires to browse the triples of an entity, to see its corresponding
DBpedia or Wikidata page and to find its similar entities. This can be feasible by connecting
to several web applications, for example, by browsing its corresponding DBpedia and
Wikidata pages, and also by using a system such as KGvec2go [11] or Wembedder [33] for
finding its similar entities. However, the above process should be done separately for each
different entity and it is not feasible to access that information in a single page. On the
contrary, through RDFsim this functionality is offered in parallel, that is, in a single page,
by using two different frames, for example, see Figure 5. Moreover, by interacting with

Information 2021, 12, 440 22 of 25

any of the two frames of RDFsim, that is, by clicking to any entity, the page is automatically
refreshed for showing the desired information for that entity.

6.2. Use Case 2. Finding the Most Similar Entities of a Popular Entity

Suppose a scenario that a user desires to find the top-K similar entities to “Aristotle”.
By using any of the browsing systems presented in Section 5.1, one way is to check the
entities that are connected to “Aristotle”, for indicating which of them are similar. However,
this task can be quite difficult and expensive for many entities. Indicatively, “Aristotle”
in DBpedia KB is directly connected with over 1,000 entities, as it is also depicted in the
left side of Figure 13. Through such a visualization, it is extremely difficult to identify
similar entities. On the contrary, through RDFsim it is feasible to restrict the results, since it
visualizes the top-K entities of each entity very fast, through different visualizations, for
example, see the right side of Figure 13.

Figure 13. Discovering Similar Entities for the selected entity “Aristotle”.

6.3. Use Case 3. Discovering “Hidden” Similarity-Based Connections between Entities

Except for the direct connections, as we have seen in Section 5.2.3, there are entities
that are discovered similar through RDFsim and there is not a direct connection between
them (i.e., see Tables 5 and 6). For instance, suppose that a user desires to find such
“hidden” connections for the entity “Socrates”, that is, see the first user in the left upper
side of Figure 14. In this paradigm (taken from RDFsim), we found that the poet “Homer”
belongs to the top-K similar entities of the philosopher “Socrates”, but these entities are not
connected through a triple in DBpedia. Thereby, by browsing only the direct triples either
of “Socrates” or of “Homer”, it would be infeasible to discover such a similarity. On the
contrary, through RDFsim such similarities can be browsed. For the given example, these
two entities share 348 common values, that is, predicate-object and subject-object pairs
in DBpedia Knowledge base, therefore it seems rational that these entities computed as
similar from the embeddings model.

Information 2021, 12, 440 23 of 25

In another scenario, that is, see the second user in Figure 14, suppose that one desires
to conduct a further analysis, that is, to find the intersection of top-3 similar entities between
two entities, say “Aristotle” and “Socrates”. Since RDFsim offers visualizations of large
paths, it is feasible as it is shown in Figure 14, that is, we can observe that the entity “Plato”
belongs to the top-3 similar entities for both “Aristotle” and “Socrates”.

Figure 14. Discovering “Hidden” Similarity-Based Connections between Entities.

7. Concluding Remarks

Since browsing is the core access method for the Web from its beginning, it is worth
investigating browsing methods that are appropriate for the Web of Data, that is, capable to
distinguish the most important connections and reveal hidden relationships. Towards this
general direction, in this paper we presented RDFsim, a similarity-based browsing system
for RDF datasets. The novelty of RDFsim comparing to existing browsing systems, is that
it offers “Parallel Browsing” by enabling user to browse not only the original data (i.e.,
triples) of a selected entity, but also its K most similar entities (even if they are not directly
connected) in the form of an interactive graph or a tagCloud visualization. The similarity
of entities is founded on word (in our case URI) embeddings (computed through word2vec
skip-gram model), however we introduced indexes for enabling real-time interaction,
which do not depend on the particular method for computing similarity. Currently, RDFsim
provides the aforementioned functionality for 345 thousand entities from 4 subsets of
DBpedia (containing movies, philosophers, video games and programming languages).

We showed that with the produced indexes, one can browse very fast the similar
entities of a given entity (e.g., for a given movie on average 0.13 seconds are needed),
and can discover “hidden” similarity-based connections among entities, that is, entities
that are similar but there is no direct connection between them in the dataset. As regards
use cases, we introduced scenarios showcasing the flexibility of RDFsim for browsing all
the information of each entity and its top-K similar entities at the same time, and for
discovering “hidden” relationships by following similarity paths.

As a future work, we plan to support more RDF datasets (apart from DBpedia) and to
enhance the scalability of the indexing process, since the computation of the embeddings
and the construction of the indexes can be time-consuming if the number of triples is
very big (e.g., more than 8 h are needed for DBpedia Movies dataset with 13 million
triples). Consequently, for supporting similarity-based browsing over big knowledge

Information 2021, 12, 440 24 of 25

graphs, comprising billions of triples, it is worth investigating methods for parallelizing the
indexing process. Furthermore, we plan to evaluate the effectiveness of the embebbings,
by comparing different parameters and embedding models (such as BERT [37], GloVE [38]
and FastText [39]). For achieving this target, we plan to extend RDFsim for supporting
precomputed similarity results, produced through any similarity method [29], and to use
specialized evaluation collections, using a task-based evaluation with users, for getting
feedback also for the interaction. Another topic that is worth further research is to test
embeddings construction methods that also exploit the literals of RDF datasets (such
methods are surveyed in [35]). Finally, as regards visualization, it is worth investigating
alternative methods that can show more values in less space while making clear their
importance and context.

Author Contributions: Conceptualization, M.C., M.M. and Y.T.; Data Curation, M.C., M.M.; Funding
acquisition, Y.T.; Investigation, Y.T., M.C., M.M.; Methodology, Y.T., M.C. and M.M.; Project adminis-
tration, Y.T.; Software, M.C.; Supervision, Y.T. and M.M.; Writing—original draft, M.C., M.M. and Y.T.
All authors have read and agreed to the published version of the manuscript.

Funding: This work has received funding from the European Union’s Horizon 2020 coordination
and support action 4CH (Grant agreement No 101004468).

Conflicts of Interest: The founding sponsors had no role in the design of the study; in the collection,
analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the
results.

References
1. Nikas, C.; Kadilierakis, G.; Fafalios, P.; Tzitzikas, Y. Keyword Search over RDF: Is a Single Perspective Enough? Big Data Cogn.

Comput. 2020, 4, 22.
2. Ilievski, F.; Beek, W.; van Erp, M.; Rietveld, L.; Schlobach, S. LOTUS: Adaptive text search for big linked data. In Proceedings

of the European SemanticWeb Conference, Kobe, Japan, 17–21 October, 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp.
470–485.

3. Camarda, D.V.; Mazzini, S.; Antonuccio, A. LodLive, exploring the web of data. In Proceedings of the 8th International
Conference on Semantic Systems, Graz, Austria, 5–7 September 2012; pp. 197–200.

4. Micsik, A.; Turbucz, S.; Györök, A. Lodmilla: a linked data browser for all. Information 2014, 31–34.
5. Atzori, M.; Mazzeo, G.M.; Zaniolo, C. QA3: A natural language approach to question answering over RDF data cubes. Semant.

Web 2019, 10, 587–604.
6. Arenas, M.; Grau, B.C.; Kharlamov, E.; Marciuška, Š.; Zheleznyakov, D. Faceted search over RDF-based knowledge graphs. J.

Web Semant. 2016, 37, 55–74.
7. Tzitzikas, Y.; Manolis, N.; Papadakos, P. Faceted exploration of RDF/S datasets: A survey. J. Intell. Inf. Syst. 2017, 48, 329–364.
8. Kritsotakis, V.; Roussakis, Y.; Patkos, T.; Theodoridou, M. Assistive Query Building for Semantic Data. In Proceedings of the

SEMANTICS Posters & Demos, Vienna, Austria, 10–13 September 2018.
9. Lehmann, J.; Isele, R.; Jakob, M.; Jentzsch, A.; Kontokostas, D.; Mendes, P.N.; Hellmann, S.; Morsey, M.; Van Kleef, P.; Auer, S.; et

al. Dbpedia–a large-scale, multilingual knowledge base extracted from wikipedia. Semant. Web 2015, 6, 167–195.
10. Ristoski, P.; Rosati, J.; Di Noia, T.; De Leone, R.; Paulheim, H. RDF2Vec: RDF graph embeddings and their applications. Semant.

Web 2019, 10, 721–752.
11. Portisch, J.; Hladik, M.; Paulheim, H. KGvec2go–Knowledge Graph Embeddings as a Service. arXiv 2020, arXiv:2003.05809.
12. Mountantonakis, M.; Tzitzikas, Y. Knowledge Graph Embeddings over Hundreds of Linked Datasets. In Proceedings of

the Research Conference onMetadata and Semantics Research, Rome, Italy, 28–31 October 2019; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 150–162.

13. Moreno-Vega, J.; Hogan, A. GraFa: Scalable faceted browsing for RDF graphs. In Proceedings of the International Semantic Web
Conference, Monterey, CA, USA, 8–12 October 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 301–317.

14. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013,
arXiv:1301.3781.

15. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed representations of words and phrases and their composition-
ality. arXiv 2013, arXiv:1310.4546.

16. Wylot, M.; Hauswirth, M.; Cudré-Mauroux, P.; Sakr, S. RDF data storage and query processing schemes: A survey. ACM Comput.
Surv. (CSUR) 2018, 51, 1–36.

17. Elbassuoni, S.; Blanco, R. Keyword search over RDF graphs. In Proceedings of the 20th ACM International Conference on
Information and Knowledge Management, Scotland, UK, 24–28 October 2011; pp. 237–242.

Information 2021, 12, 440 25 of 25

18. Delbru, R.; Rakhmawati, N.A.; Tummarello, G. Sindice at semsearch 2010. In Proceedings of the 19th International World Wide
Web Conference, Raleigh, NC, USA, 26–30 April 2010.

19. Liu, X.; Fang, H. A study of entity search in semantic search workshop. In Proceedings of the 3rd International Semantic Search
Workshop, Raleigh, NC, USA, 26 April 2010.

20. Kadilierakis, G.; Nikas, C.; Fafalios, P.; Papadakos, P.; Tzitzikas, Y. Elas4RDF: Multi-perspective triple-centered keyword search
over RDF using elasticsearch. In Proceedings of the European Semantic Web Conference, Virtual online, 1–6 November 2020;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 122–128.

21. Vega-Gorgojo, G.; Slaughter, L.; Von Zernichow, B.M.; Nikolov, N.; Roman, D. Linked data exploration with RDF surveyor. IEEE
Access 2019, 7, 172199–172213.

22. Papadaki, M.E.; Spyratos, N.; Tzitzikas, Y. Towards Interactive Analytics over RDF Graphs. Algorithms 2021, 14, 34.
23. Colazzo, D.; Goasdoué, F.; Manolescu, I.; Roatiş, A. RDF analytics: lenses over semantic graphs. In Proceedings of the 23rd

International Conference on World Wide Web, Seoul, Korea, 7–11 April, 2014; pp. 467–478.
24. Zou, L.; Huang, R.; Wang, H.; Yu, J.X.; He, W.; Zhao, D. Natural language question answering over RDF: A graph data driven

approach. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, Snowbird, UT, USA,
22–27 June 2014; pp. 313–324.

25. Bast, H.; Haussmann, E. More accurate question answering on freebase. In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management, Melbourne, VIC, Australia, 19–23 October 2015; pp. 1431–1440.

26. Shekarpour, S.; Marx, E.; Ngomo, A.C.N.; Auer, S. Sina: Semantic interpretation of user queries for question answering on
interlinked data. J. Web Semant. 2015, 30, 39–51.

27. Dimitrakis, E.; Sgontzos, K.; Tzitzikas, Y. A survey on question answering systems over linked data and documents. J. Intell. Inf.
Syst. 2019, 55, 1–27.

28. Nikas, C.; Fafalios, P.; Tzitzikas, Y. Open Domain Question Answering over Knowledge Graphs using Keyword Search, Answer
Type Prediction, SPARQL and Pre-trained Neural Models. In Proceedings of the 20th International Semantic Web Conference;
Virtual online, 24–28 October 2021; Springer: Berlin/Heidelberg, Germany, 2021.

29. Chandrasekaran, D.; Mago, V. Evolution of Semantic Similarity—A Survey. ACM Comput. Surv. (CSUR) 2021, 54, 1–37.
30. Albertoni, R.; De Martino, M. Asymmetric and context-dependent semantic similarity among ontology instances. In Journal on

Data Semantics X; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–30.
31. Hickson, M.; Kargakis, Y.; Tzitzikas, Y. Similarity-based browsing over linked open data. arXiv 2011, arXiv:1106.4176.
32. Mountantonakis, M.; Tzitzikas, Y. Applying cross-data set identity reasoning for producing URI embeddings over hundreds of

RDF data sets. Int. J. Metadata, Semant. Ontol. 2021, 15, 1–22.
33. Nielsen, F.Å. Wembedder: Wikidata entity embedding web service. arXiv 2017, arXiv:1710.04099.
34. Mountantonakis, M.; Tzitzikas, Y. Content-based union and complement metrics for dataset search over RDF knowledge graphs.

J. Data Inf. Qual. (JDIQ) 2020, 12, 1–31.
35. Gesese, G.A.; Biswas, R.; Alam, M.; Sack, H. A survey on knowledge graph embeddings with literals: Which model links better

literal-ly? Semant. Web, 2019, 1–31.
36. Kastrinakis, D.; Tzitzikas, Y. Advancing search query autocompletion services with more and better suggestions. In Proceedings

of the International Conference on Web Engineering; Vienna, Austria, 5–9 July 2010; Springer: Berlin/Heidelberg, Germany, 2010;
pp. 35–49.

37. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

38. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543.

39. Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching word vectors with subword information. Trans. Assoc. Comput.
Linguist. 2017, 5, 135–146.

40. Tzitzikas, Y.; Papadaki, M.; Chatzakis, M. A Spiral-like Method to Place in the Space (and Interact with) too Many Values. J. Intell.
Inf. Syst. 2021, 1–25.

41. Vrandečić, D.; Krötzsch, M. Wikidata: A free collaborative knowledgebase. Commun. ACM 2014, 57, 78–85.

	Introduction
	Related Work
	Access Systems over RDF
	Semantic Similarity Methods (Focus on RDF Knowledge Graph Embeddings)
	Semantic Similarity in Knowledge Bases
	RDF Knowledge Graph Embeddings

	The Positioning and Novelty of RDFsim

	The Process of Computing and Storing the Top-K Similar Entities Using Embeddings
	Step A. Configuration and Data Fetching
	Step B. Production of Embeddings for the Fetched Data and Computation of Similar Entities
	Step B1. Computation of URI Embeddings
	Step B2. Production of Vectors for the URIs and Computation of Similar Entities

	Step C. The Indexing Process
	How Can the Process Be Adjusted to Other Datasets or Similarity Methods?

	The Process of ``Parallel Browsing''
	Landing Page and Finding the First Entity
	The Frames of ``Parallel Browsing''
	Constructing the Browsing Frames
	Finding the Selected Entity in the Index
	Constructing the Left Frame of RDFsim Web Page
	Constructing the Right Frame of RDFsim Web Page

	Implementation and Current Online Version of RDFsim

	Evaluation
	Comparison with Related Systems
	Efficiency and Similarity Measurements
	Datasets and Indexes of RDFsim
	Efficiency Measurements
	Indicative Measurements for the Results of the Embeddings

	Use Cases
	Use Case 1. ``Parallel Browsing'' of the Entity in Focus
	Use Case 2. Finding the Most Similar Entities of a Popular Entity
	Use Case 3. Discovering ``Hidden'' Similarity-Based Connections between Entities

	Concluding Remarks
	References

