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Abstract Modern information systems have to support the user in managing, un-
derstanding and interacting with, more and more data. Visualization could help
users comprehend information more easily and reach conclusions in relative shorter
time. However, the bigger the data is, the harder the problem of visualizing it be-
comes. In this paper we focus on the problem of placing a set of values in the 2D
(or 3D) space. We present a novel family of algorithms that produces spiral-like
layouts where the biggest values are placed in the centre of the spiral and the
smaller ones in the peripheral area, while respecting the relative sizes. The de-
rived layout is suitable not only for the visualization of medium-sized collections
of values, but also for collections of values whose sizes follow power-law distribu-
tion because it makes evident the bigger values (and their relative size) and it does
not leave empty spaces in the peripheral area which is occupied by the majority
of the values which are small. Therefore, the produced drawings are both informa-
tive and compact. The algorithm has linear time complexity (assuming the values
are sorted), very limited main memory requirements, and produces drawings of
bounded space, making it appropriate for interactive visualizations, and visual
interfaces in general. We showcase the application of the algorithms in various
domains and interactive interfaces.

Keywords Visualization, Visual Interfaces

1 Introduction

Visualization is important for understanding data, and this concerns almost every
data management task: from schema visualization, to query answer visualization,
analytics, data mining, data cleaning, and workload visualization. Moreover, mod-
ern information systems should enable the user to understand, and interact with
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larger number of objects than in the past (e.g. the results of summarization, sen-
timent analysis, dataset discovery and search, etc). However the bigger the data
is, the more difficult it is to visualize and understand it. In this paper we focus on
a fundamental problem: how to visualize a set of values in the 2D (or 3D) space.
Quite often we have to visualize a function f, i.e. a set of (z, f(x)) pairs where
x ranges a finite domain X, and commonly a plot is used where all x values are
placed in the x-axis and f(z) are presented as dots in the (z,y) coordinate. If f
represents functions like frequency, size, popularity, wealth, etc, then the (z, f(x))
pairs are ordered in descending order with respect to f(z) and then are plotted.
However if X is big and f(z) follows power law then the resulting plot is not suit-
able for inspection by humans: its long heavy tail makes almost invisible the first
points, i.e. the big elements (let alone the small elements). The commonly used
approach for such cases is to make a plot in the log-log scale. In such cases the
points tend to form a line and it can be approximated with various functions [22].
However such drawings are not convenient for interactive visualization systems:
the user cannot easily inspect and interact with each value.

In this paper we introduce a complementary approach that is based on a circu-
lar drawing. We introduce the algorithm Concentric Spiral that yields a plot that
is (a) more compact than a plain plot, and (b) more informative in comparison to
a log-log plot. It is like “coiling” the big tail of the normal plot. To grasp the idea,
Figure 1 shows the populations of the 1000 biggest cities in descending order! in
five forms: (a) normal plot, (b) log-log plot and (c) Concentric Spiral, (d) tree-maps
and (e) sunburst diagrams. Notice that tree-maps and sunburst diagrams do not
show each individual value (the small values are collapsed to continuous areas); in
general they cannot scale to large numbers while showing each individual element
(something that is important for inspection and interaction purposes).

The drawings produced by Concentric Spiral can be considered as aesthetically
pleasing probably because (i) spiral is a very natural (frequently occurring) shape,
and (ii) the drawing does not leave unnecessary blank spaces. Note that the derived
spiral-like layout, is not the Archimedean spiral (where the distances between the
turnings are constant), nor the logarithmic spiral (where the distances between the
turnings increase in geometric progression); instead the spiral follows the variations
of the data, i.e. the width of each “circle” of the spiral depends on the sizes of the
objects that are placed in that circle. Another important merit of the algorithm
is that it has linear time complexity (if the values are not sorted then we have
to sort them first, i.e. O(nlogn) in that case) and very limited main memory
requirements, making it appropriate for the placement of too many objects in the
space.

We build upon the preliminary ideas for the visualization of the Linked Open
Data Cloud [39], and in this paper we refine and extend the algorithm, we introduce
several extensions and variations of it that differ on how they manage the empty
internal space, we analyze its properties, we show how to combine several such
layouts for visualizing more than one functions, we propose extensions allowing
the visualization of millions of objects, we elaborate on its suitability for visualizing
values that follow power-law, we discuss efficiency and implementation, and finally
we report feedback from users.

1 Data retrieved by querying the SPARQL endpoint of Wikidata https://query.wikidata.
org/ on May 22, 2019.
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Fig. 1: The populations of the 1000 biggest cities using (a) normal plot, (b) log-log
plot, (c¢) Concentric Spiral, (d) tree-map, (e) sunburst diagram

In a nutshell, the contribution of this paper is that it describes and analyzes a
family of layout algorithms for producing compact circular diagrams, with linear
time complexity (or nlogn if the values are not sorted), minimal main memory
requirements, subject to several variations. We prove that the algorithm yields
drawings with no collision, and in case of power laws with exponent greater than
one the occupied space is finite (even if the number of elements is infinite). More-
over the paper provides examples of applications from various domains. Overall,
this layout can be exploited in a plethora of visualization cases and frameworks
either static or interactive. The rest of this paper is organized as follows. Section 2
discusses requirements and background, Section 3 discusses related work, Section
4 presents the main algorithm, while Section 5 presents extensions, and Section
6 presents variations of the algorithm. Section 7 analyzes the space occupied by
the produced diagrams, Section 8 demonstrates applications, and finally Section
9 concludes the paper.

2 Requirements and Background
2.1 Requirements

From our experience the last years in designing and building interactive informa-
tion systems, that visualize values of various kinds as shapes in the 2D space, in
environments that allow the user to interact with these shapes, we identified the
following desired features, that we shall hereafter call basic requirements: (a) vi-
sualize values as distinct shapes, each with an area analogous to the corresponding
value, enabling in this way the visual comparison of the values, (b) place bigger
values should be placed at the centre for making them evident as well as their
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relative size, (c) collisions should never occur, (d) there should be no big empty
spaces, (e) ability to visualize thousands (or even millions) of values very fast,
(f) visualize values with aspect ratio 1 for aiding readability and interaction (e.g.
for building virtual 2D/3D VR or AR worlds where each value corresponds to an
area/volume with which the user can further interact for getting more information
or for performing a particular task).

These requirements (or desired features) are quite generic and relevant to vari-
ous contexts including visualization frameworks (e.g. [19]), faceted search systems
[47] (e.g. for visualizing the counters of the available filters), big data exploration
[10, 23], visualization of large answers ([6, 3]) OLAP interfaces in general [43, 36],
visualization of query workloads [28], data mining [35], data cleaning [20], dataset
search [14], new initiatives related to digital libraries [54], and others.

2.2 Background: Power-Laws

Since we are interested in not only small or medium-sized collections, it is worth
considering the distribution that a large number of datasets follow?. The distri-
butions of a wide variety of physical, biological, and man-made phenomena ap-
proximately follow a power law over a wide range of magnitudes [15], e.g. word
frequencies (Zipf’s law), city populations, wealth, the web [1], as well as Linked
Data. As regards the latter, such distributions appear at schema level (as studied
in [44]), but also on data level (i.e. the sizes of datasets in RDF triples [37, 24]).

The most commonly used approach for visualizing a function that follows
power-law, is to use a plot in the log-log scale. Indeed, this is the approach that is
followed by papers that reveal and measure power-law distributions (e.g. see [25])
and such log-log plots are offered by software packages that assist revealing such
distributions (like [2]). The reason is that in case of power-laws the points tend
to form a line and can be approximated with various functions, as it is well elab-
orated in [22]. Note that the identification of power laws, is also useful for graph
drawing, e.g. [29] at first divides the nodes of a graph into power and non-power
nodes and then it applies a force-directed placement algorithm that emphasizes
the power nodes which results in establishing local neighborhood clusters among
power nodes.

Formally, a power-law [15] is a function f : X C R — Rx¢ of the form:
flz) = az™?, where «, B are constants, with o, € R>o This means that
f(x) can be drawn as a line in the log-log scale with a slope equal to —f8. Note
that the above definition excludes the value § = 0, since in this case f(z) would
be equal to « for all values of x, i.e. f would be constant. Loosely speaking,
uniform distributions can be regarded as a trivial case of power-law distributions.
Intuitively, the value of 8 is a measure of the skewness of the distribution, i.e.
S = 0 implies no skewness. A well known example of power-law is the Zipf’s law
that states that given some corpus of natural language utterances, the frequency
of any word is inversely proportional to its rank in the frequency table; here g = 1,
i.e. f(x) = ax™?!, although values greater than 1 (for 3) have been measured too.

2 Roughly, we could consider that small-sized corresponds to a few dozens objects, medium-
sized to a few hundreds, and large-sized to thousands and more.
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3 Related Work

In the context of Linked Data (see [38] for a survey) several methods have been
proposed for the visualization of RDF graphs (i.e. the graph that is composed by
a set of RDF triples) e.g. see [9], as well as the surveys [11] and [17]. Visualiza-
tion is also very important for data analysis [4] and there are various tools that
offer visualizations for big data analytics [42, 32, 48, 49, 26]. The more related
visualizations to our work are described below.
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Fig. 2: Related radial, spiral and tree-map visualizations: (a) circular drawings of
graphs [40], (b) dynamic graphs with radial layout [55], (c) exploratory analysis of
cyclic multivariate data [52], (d) clustered bipartite graphs in multi-circular style
[30], (e) visual maps for data-intensive ecosystems [34], (f) snake-spiral visualiza-
tion [33], (g) visualization of serial periodic data [13], (h) tree-maps [31], (i) spiral
tree maps [46], (k) spiral visualization for time series [53].

There are several methods for producing circular-like diagrams, see [21] for a
survey of radial methods for information visualization. To start with, there are al-
gorithms for circular drawings of graphs, like [40], where the graph nodes are placed
in a circle and emphasis is given on reducing edge crossings, e.g. see Figure 2(a).
However in such algorithms the nodes are points, not shapes, therefore the notion
of size is not supported. There are also algorithms for radial layouts, mainly for
trees [55], e.g. see Figure 2(b), which again do not support different sizes. From the
survey [51], the most related visualization seems to be [52], a method for exploring
multivariate data that may exhibit periodic behavior. However such drawings can
host values with small variation and the number of objects in a circle is fized, e.g.
see Figure 2(c), therefore they cannot host too many values, nor values that vary
a lot. There are also spiral displays enhanced with coding and interaction like
that in [45], however in that work every “concentric zone” has the same width,
therefore one cannot visualize too many values especially if they vary a lot, since
in that case the produced diagram would waste a lot of space unless colors are
used to signify size (but in that the correspondence between area and value is
lost). These methods seem to be appropriate to identify periodic trends, not for
visualizing values with big variations For clustered bi-partite graphs, [30] pro-
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poses a multi-circular style, e.g. see Figure 2(d), while for maps of data-intensive
software ecosystems (by considering also clustering purposes) [34] proposes layout
algorithms based on concentric circles, e.g. see Figure 2(e). Such layouts usually
contain only a few circles and there are rather big empty areas (in comparison to
the algorithms presented in this paper). There are pizel-oriented visualization tech-
niques for exploring large data bases, e.g. the snake-spiral technique [33], however
that technique does not respect the relative sizes (all values are visualized with the
same size), e.g. see Figure 2(f). The same is true for the visualization method for
serial periodic data [13]: it does not respect the sizes, it adopts the Archimedean
spiral, e.g. see Figure 2(g). With respect to tree-maps [31], e.g. see Figure 2(h),
and squarified tree maps [12], which are usually applied for the visualization of
hierarchical information structures, they do respect the sizes, they fill entirely the
available rectangular region, however it is difficult to achieve a small aspect ra-
tio (the ideal is one since regions with a small aspect ratio, i.e. fat objects, are
easier to perceive); and it also difficult to preserve some sense of the ordering of
the input data. Even though, several improvements of tree-map representations
have been proposed, like circle packing [50], Squarified Treemaps [12], Quantum
Treemaps [8], treemaps with bounded aspect ratio [18], Stable Treemaps [41] Bub-
ble Treemaps [27], Voronoi Treemaps [7] or GosperMap [5], see Figure 3, a few
limitations among them are that (i) relative ordering may be lost [50, 12], (ii)
changes in the data set can cause dramatic discontinuous changes in the layouts
[12] (iii) efficiency may be decreased [41, 27] and (iv) in some cases no guarantees
on the aspect ratio is given [7]. For instance, Bubble Treemaps [27] (Figure 3.0)
achieve aspect ratio 1 (as it uses circles), however it does not respect the absolute
ordering and its time complexity is quadratic. @~ There are algorithms that pro-
duce spiral treemap layouts for visualizing changes of hierarchical data, e.g. [46],
however these algorithms seem applicable only on small number of objects, e.g.
see Figure 2(i), and we have not seen them being applied on real data. A spiral
visualization for time series is proposed in [53], however it is not appropriate for
values that variate a lot, e.g. see Figure 2(k).

Fig. 3: Tree-map visualizations: (1) Squarified Treemap [12], (m) Stable Treemap
[41], (n) Voronoi Treemap [7], (o) Bubble-Treemap [27], (p) Gospermap [5].

As regards, circle packing, the method described in [50] groups values in circles,
while we use the sectors of a circle. That method seems to be suitable for cases of
hierarchical data sets where users are more interested in the relationships between
them. In contrary, our algorithms are also appropriate for sets of values that vary
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a lot (i.e. power-law) emphasizing the biggest/most important values of a data
set. We also preserve the ordering, while that work does not. In general circle
packing aims at minimizing the area, but the resulting diagrams do not respect
the rank of the objects, i.e. the exact rank of an object is not at all obvious, nor
which is its predecessor and successor in the rank. The corresponding decision
problems (i.e. weather a given set of circles can be packed in a particular bin) are
NP-hard, however various approximate algorithms exist. From that point of view,
we could say that our algorithm could be considered as an approximate algorithm
for packing squares in a circle that fully preserves the ranking of the objects and
has linear complexity (if the values are sorted).

Overall, no radial, spiral or tree-map layout can tackle all requirements that we
listed earlier (in Section 2.1). In brief, the radial layouts do not show /respect sizes
and their ability to show many values is limited. The tree-map algorithms although
they leverage all the available space, it is difficult to achieve a good aspect ratio
and at the same time respect the ranking of the objects. The algorithm that
we will present gives always aspect ratio 1 (square shapes), it fully respects the
ranking of objects, and it tries not to waste space, while providing an aesthetically
pleasing (rounded) layout. From a circle-packing point of view, we could say that
our algorithm can be considered as an approximate algorithm for packing squares
in a circle that fully preserves the ranking of the objects and has linear complexity
(if the values are sorted).

4 The Algorithm Concentric Spiral

Let f be the function that we want to visualize, i.e. a set of (z, f(z)) pairs where
x ranges a finite domain X, and let Y denote the range of the function, i.e. Y =
{ f(z:) | xzi € X} (we shall use Ygese to denote Y sorted in descending order).
Each y € Y will be visualized by a square shape, specifically with a square having
side length ,/y, implying that its area equals y. We consider square shapes, since
for a given perimeter, square is the rectangular shape with the maximum area3.
Based on the requirements listed in §2.1, we present a new 2D placement
algorithm that we call Concentric Spiral. The exact steps of the algorithm are
shown in Alg. 1. The algorithm takes as input a series of numbers in descending
order (i.e. Ygesc) and a number (ringGap) that specifies the desired minimum gap
between the rings. The idea of the placement is the following. Each number of
the input is represented as a square shape. The shapes are placed in concentric
rings. The radius of the first, smallest, ring is the size of the biggest number. The
placement of the subsequent shapes is done as follows. We compute a chord that
ensures no collisions based on the sizes of the current (to be placed) and the
previous shape. We set this to be equal to the side of the current shape plus the
size of the previous shape. Based on that chord we compute the corresponding
angle, and we place the new shape at the corresponding spot of the ring. This is
illustrated in Figure 4. Suppose that A is the centre of the first shape, and B is
the centre of the next shape that we want to place. The figure illustrates why the
sought angle is: @ = 2 arcsin(5227%) for a given chord denoted by x in the figure,

2-radius

and radius p. This is what, in Alg. 1, degreesO fChor(x, p) computes.

3 Arbitrary shapes could be supported by considering their minimum bounding squares.
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Algorithm 1 Concentric Spiral layout algorithm

Require: A list of K shapes (each characterized by a number len ) ordered in descending
order wrt their size

Require: A constant ringGap for setting the desired gap the between the rings

Ensure: A cyclic layout of the input shapes, with no collisions and no unnecessary empty
spaces in the peripheral areas

1: i1+ 0;0«+0 > counter and angle set to zero
2: p = slencuyr = slenmaz = shapesli|.len > initial radius equal to the side of the biggest
shape
3: while i < K do > for each shape
4: X < shapes[i].len > chord is set equal to the size of shape to be drawn (for placing
the 1st shape above the x-axis)
5: if i > 0 then > if not the first shape
6: X < X + slencur > adding to the chord the size of the prev. shape
7: Oincr < degreesO fChord(x, p) > degrees corresponding to chord with size x in a
cycle with radius p
8: 00+ 0Oiner > increasing the current angle
9: if 6 > 2+ 7w then > if true then a new ring should be started
10: p < p+ slenmaz + ringGap > to avoid collisions with shapes of the previous ring
11: slenmaz < shapes|i].len > this is the max shape size in this new ring
12: 0« 0—2xm7 > for ranging 0..27
13: X < shapesli].len > the size of this shape
14: Oiner < degreesO fChord(x, p)
15: 0 < 0+ (Oincr/2) > Since this is a new ring

16: z + CanvasCenterX + p * cos(6) > the z coord. of the point where the centre of the
new shape should be placed

17: y < CanvasCenterY + p *sin(f) »> the y coord. of the point where the centre of the
new shape should be placed

18: shapecur + shapes[i + +] > gets the next shape
19: drawShapeAtCenter(x,y, shapecur) > draws the shape with center at =,y
20: slencyr < shapecyr.len
B
side B o
B X = side A+ side B P X
2\
\
\

psin(8/2)= x /2
sin(B6/2) = x / (2p) &

Side A 8/2 = arcsin (x / (2p)) &
0 = 2 arcsin (x / (2p))

Fig. 4: The angle that determines the position of the next shape

The algorithm continues to place the rest of the shapes in that manner and
just before we reach 27, we start the next bigger ring whose radius is the radius
of the previous ring increased by the size of the biggest shape in the previous
ring, plus a number accounting for the extra empty space that we want to leave
between the rings (this is the input ringGap of the algorithm). This is illustrated
in Figure 5. This method ensures no collisions between the shapes (as we shall
prove). It is not hard to see that as the shapes get smaller, the concentric rings
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p =side A
p'=p+ sideA+rG
=p+p+r1G

Fig. 5: From the first ring to the second ring

become denser avoiding in this way unnecessary empty spaces. In addition, as the
rings become denser the empty spaces between the shapes decrease as well. Notice
that Alg. 1 refers to the len (length) of shapes. This corresponds to the side length
of the squares. Even if it corresponded to their area, this distinction would not be
important for power-laws: if area follows power-law with 8 = Barea, then the side
also follows power-law with 8 = Barea /2.

Time Complexity. It is straightforward that Alg. 1 has O(n) time complexity
(n is the number of shapes). Experimental measurements are given in subsequent
sections (§8.1).

Prop. 1 Alg. 1 (a) always terminates, and (b) it yields a drawing with no collision.

Proof: (a) holds since the algorithm just consumes the input by scanning it once. (b) holds
because of the way we compute chords (sum of the sides of the neighboring shapes) and due
to the distance of the successive rings. Specifically, the maximum distance between the centres
of two squares that intersect, is the half of the sum of their diameters (if bigger then it is
impossible to intersect). Specifically, if the first square has side a and the second has side
b, then this distance is %(a\/ﬁ + b\/i) = ’l—jﬁb. Since the centres of two successively placed
(intra-ring) squares by the algorithm is a + b (since it is the sum of the length of the previous
and to be placed shape), no collision is possible between squares of the same ring. Since the
distance between two successive rings is the maximum size of the shapes in the previous ring,
say a, plus the size of the first shape of the new ring, say b, it is guaranteed that no collisions

are possible between shapes of neighboring rings (since a + b > “—jﬁb) o

4.1 Concentric Spiral in Small Sets of Values

To understand the behavior of the algorithm for small numbers of n, Figure 6
shows the visualization of only 100 synthetically generated values where the first
(maximum) value is the number 100. In (a) the side of the squares is reduced by
7%, in (b) the side is reduced by 21%, in (c) the side follows a power-law with
B =1, in (d) the size is reduced by a random percentage in the range [2,30). The
key points are: (a) if the values decrease smoothly, we get a circular drawing, and
(b) the more skewed the distribution is, the more compact the drawing becomes
for being able to host more values.
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Fig. 6: (a): side reduction by 7%, (b): side reduction by 21%, (c): the side follows
a power-law with § = 1, (d): side reduction by a random percentage in range
12,30)%

4.2 Configuration Parameters and their Impact

There are some parameters that affect the way the layout looks like, and can be
exploited for getting a layout that facilitates others tasks that we may like to carry
out.

The first is the scaling, i.e. the min and max size of the shapes in the visu-
alization. This choice depends on the resolution of the canvas, but also on other
aspects. For instance, if we want every shape to be clearly visible we may define
as min size not only 1 pixel but more pixels. Although any scaling of the range
[Yn, Y1] to [ShapeSizemin, ShapeSizemas] can be considered as a valid scaling, if
ShapeSizein is more than 1 pixel, then the illustration of the relative sizes will
not be very accurate. For instance, Figure 7 shows three different visualizations
of the same dataset (the population of the 1000 biggest cities): the first uses for
[ShapeSizemin, ShapeSizemas] the interval [1,40], the second the interval [5, 40],
and the last the interval [10, 40]. We will revisit the notion of scaling, for the case
of very big datasets, later in §7.1.

[1,40] [5,40] [10,40]

Fig. 7: The effect of using different min shape sizes in the visualization of the 1000
biggest cities

The second parameter is the parameter ring gap (ringGap). If we decide to
reduce it as the shapes become smaller, then that would harm the readability of
the diagram and the visibility of the outer rings. For this reason in the algorithms
we keep it stable from the first up to the last ring.
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Axes. Normal and log-log plots have an X-axis and a Y-axis: the values at the
right side of X allow us to see at a glance how many points are visualized, while the
values in the upper (resp. lower) parts of Y allow to see the biggest (resp. smallest
value(s) of f(z). The minimum enrichment of a Concentric Spiral-based drawing
for conveying this information, is to enrich it with three values: the numbers of
values, the maximum value and the minimum number. For example, the diagram
in Figure 1 contains:

#Values=1,000

Max=26,495,000, Min=433,970

meaning that we see 1,000 values (city populations), where the biggest is 26,495,000,
and the minimum is 433,970. For making evident at a glance how many values
are visualized (and how many would fall in each order of magnitude of the X-axis
of a traditional log-log plot), we enrich the diagram with concentric azes drawn in
the following manner: after placing 10° shapes in the drawing, we plot a cycle with
thickness analogous to i. For example, Figure 8(a-b) shows the axis-enriched draw-
ing of the 1000 biggest cities, as well as the drawing of 23,113 values (frequency
of words from Shakespeare). In one glance we can understand that the first has 3
orders of magnitude, and the second 4. Analogously, we can use concentric axes
for showing the information related to the Y axis, specifically by using concentric
axes (with color different than the those for the X axis) at the radii where the
values y; change magnitude.

= E 2] |
L i - .
L ’E b=l 12.7%
T [T | 9.4% 795
=
T [+] & I I I
™ |A| M _
M“ : 2] B
‘LHTWJ \—‘ [=
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Fig. 8: (a): visible axes for the 1000 biggest cities, (b): a dataset comprising 23,113
values, (c and d): the frequencies of Latin characters

Labels. As regards labels, various options are supported for what to show inside
the square: (i) the value y;, (ii) the value/label x;, (iii) the rank of y; in Ygese, i-e.
i, (iv) any combination of them. The labels are enclosed in the squares, enabling in
this way to inspect more clearly the top-K (say 5-10) elements without overloading
the diagram. Note that the labels do not affect the size of the squares, since the
font size of the labels adapts to the size of the squares. For example Figure 8(c-d)
shows the frequency of the 26 letters in English, without labels and with labels
(z; and y;)
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5 Extensions of Concentric Spiral

5.1 Pie chart-like Extension

Apart from visualizing one set of values Yges. we may want to visualize m sets (for
a small m value), i.e. a family of sets Y1, ..., Yy, each being a set of values ordered
in descending order. This can be achieved by extending Alg. 1 so that instead of
using all angles in the range [0, 2], to take as input the desired angle range. Then
the range [0,27] can be partitioned into m angle ranges, one for each of the m
sets. We can use then Concentric Spiral for placing the shapes of each set at the
corresponding slice defined by the angle interval [fmin, Omaz]: We just have to use
Omin to determine where to place the first shape and 0pq. to determine when
to change ring (the exact steps of the extended algorithm are given in §6.5). For
example, Figure 9(a) shows the visualization of 3 sets each having 2,000 values,
(b) shows 9 sets each having 200 values, and (c) shows 9 sets each having unequal
number of values (from 10 to 2,000). It is not hard to see that we can use this
angle-restricted extension not with the entire range [0, 27] but with an angle range
based on our preference. For example we can use the angle range [0, 7] for getting
a visualization that resembles the seats of a parliament as illustrated in Figure
9(bottom) that shows 8 slices in [0, 7].

(a) 3 sets each having 2,000 values (b) 9 sets each having 200 values (c) 9 sets the smallest has 10 values and the
biggest has 2,000 values

|
s
Fig. 9: Pie-chart like extension of Concentric Spiral
Overall, the pie chart-like extension of Concentric Spiral can be useful for (a)

visually inspecting/comparing more than one datasets, and (b) for clustering the
values of a dataset according to one criterion.
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5.2 On Visualizing more than one Function

So far we have focused on how to visualize one function f, specifically its value
set Y, ordered in descending order, i.e. Yges.. Now suppose that we have another
function g over X, i.e. g : X — Z. Here we describe how we can visualize both
f(z) and g(x). If the range of g is small (i.e. |Z] is small), say 2 < |Z] < 5, then
apart from the pie char-like extension described in §5.1, we can extend the previous
visualization and make clear the g(z) by drawing the shape corresponding to f(x)
with a different shape type, e.g. square, triangle, oval, etc., or a different color. Both
of them (i.e. shapes and colors) can be combined for visualizing three functions
in total: f by the size of the shape, g by the shape type, and h by the color. As
we shall see in Section 8, we can also employ 3D and use the third dimension for
visualizing an additional function, i.e. 4 functions in total. In that case, since the
volume (and not the area) of the shape should correspond to f(x), if we employ
cubes then the edge length should be set to ¢/ f(z) so that the volume of the cube
is equal to f(zx). Overall, by considering also the slice-based extensions (of §5.1),
we can reach 5 functions in total: one “dominant” i.e. the one that follows the
power-law distribution, and 4 whose range is small.

6 Variations of Concentric Spiral

Below we introduce three variations of the core algorithm, all having linear time
complexity, that can reduce the internal free space at the center of the drawing,
if that is required. Specifically Section 6.1 presents a ring variation, Section 6.2
presents a theater-like variation, and Section 6.3 presents a variation that mizes
the above two. Then Section 6.4 compares these variations, and finally Section 6.5
presents the general algorithm that can produce any of these variations.

6.1 Concentric Spiralging

The basic idea is the following: Instead of increasing the radius after the comple-
tion of the first circle, based on the largest shape placed in that circle (at line 10 of
Alg. 1), we can increase the radius just by the ringGap for getting a denser layout.
However we have to check whether that position is free for avoiding collisions with
the shapes that have already been placed. Note that this is not required in Con-
centric Spiral because the radius is increased based on the largest shape placed in
that circle. We can check whether a position is free before placing a shape (at line
28 of Alg. 1) by checking the colors of the canvas pixels. Since shapes are placed
in descending order of size, it is enough to check the color only of the four corners
of the candidate position for the placement. This algorithm produces layouts with
less empty space between the core of big shapes and the periphery of small shapes.
For the case of 5,000 shapes, Figure 10(a) shows the layout produced by the Con-
centric Spiral, while Figure 10(b) shows the layout produced by the Concentric
Spiralng.



14 Y. Tzitzikas et al.

(a) () ©

Fig. 10: (a): Concentric Spiral, (b): Concentric Spiralg:ng (c): Concentric
SpiralTheater

6.2 Concentric SpiralTheater

If we would like to leverage the internal space between the big shapes then we could
use a variant of Concentric Spiral that we call Concentric Spiralrpeqter: after the
completion of the ring (that contains the biggest shapes), instead of increasing
the radius (at line 10 of Alg. 1), as it is done in Concentric Spiral and Concentric
Spiralring, we decrease it by the width of the ringGap. In this way the biggest
datasets form the big circle and the small ones then fill the internal space. This
algorithm derives a more dense drawing resembling an ancient Greek theater, as
shown in Figure 10(c). However it is not guaranteed that the internal space will
be enough for hosting all small shapes, an issue that is tackled by the algorithm
presented next, in §6.3.

6.3 Mixing Concentric Spiralg;ng and Concentric Spiralrheqter

Concentric Spiralring and Concentric Spiralrpheaqter can be combined: we can start
as in Concentric Spiralypeqter and if the internal space is completely filled before
placing all shapes, we can continue by placing the remaining shapes in the periph-
eral area, as in the Concentric Spiralgring. This is shown in the diagrams of the
third column of Figure 11 that visualizes 10,000 values. Alternatively one could
use the Concentric Spiralrpeaqter With a bigger initial radius but that would require
estimating which radius is adequate. Instead, by mixing the two algorithms, there
is no need for any estimation; a single pass is enough for drawing all shapes.

6.4 Concentric Spiral vs Concentric Spiralging vs Concentric Spiralrseater

To better understand how the skewness of the distribution of data affects the
produced layouts, Figure 11 shows Concentric Spiral, Concentric Spiralg;ngy and
Concentric Spiralrpeater over three versions of a dataset with 10,000 values. Each
version has the same maximum value, however each version has different reduction
rate, specifically in the 1st row f = 1/2, in the 2nd 8 = 1, and in the third
row 8 = 2. The same scale has been used for all 12 diagrams. We observe that
the diagrams of Concentric Spiralring and Concentric Spiralrpeqter 0ccupy less
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(b) ()

Fig. 11: (a): Concentric Spiral, (b): Concentric Spiralging (c): Concentric
Spiralrheqter over 10,000 values.

space than those of Concentric Spiral, however Concentric Spiral better reveals
the relative sizes of the middle-sized elements.

6.5 The Generalized Algorithm

The generalized algorithm that supports all previously described extensions and
variations is given in Alg. 2. Apart from the list of values in decreasing or-
der, it takes as input a parameter mode (ranging ExpandSpiral, ExpandRing,
and Shrink) that determines which layout (either Concentric Spiral, Concentric
Spiralging, or Concentric Spiralrpeqter respectively) should be produced. In addi-
tion it takes as input an angle range [@min, @mas| for producing the pie chart-based
extension. Note however that the check at line 27 of the algorithm is redundant for
the Concentric Spiral (since the condition will always be true). The small size of the
algorithm facilitates its implementation in the existing visualization frameworks.

7 Analyzing the Occupied Space

Let’s further analyze the space occupied by the diagrams produced by Concentric
Spiral. The area of the ring defined by the radii R2 and R1 (where R2 > R1) is
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Algorithm 2 Concentric Spiral layout algorithm with Variations

Require: A list of K shapes (each characterized by a number len ) ordered in descending
order wrt their size

Require: An angle range defined by an interval [0min, Omaz]-

Require: A mode from the following list: ExpandSpiral, ExpandRing, Shrink.

Ensure: A cyclic layout, within a circular sector [0pmin,0maz], with no collisions and no
unnecessary empty spaces in the peripheral areas

1: i+ 0; 0 < Omin > Counter and angle set to zero
2: p = slencur = slenmas = shapes|i].len > initial radius equal to the side of the biggest
shape
3: while i < K do > for each shape
4: X < shapesli].len > chord set equal to the size of shape to be drawn (for being above
the x-axis)
5 if i > 0 then > if not the first shape
6 X < X + slencyr > adding to the chord the size of the prev. shape
7 Oincr < degreesO fChord(x, p) > degrees of chord with size x
8: 0+ 0+ 0Oiner
9: if 0 > 0,02 then > if true then a new ring should be started
10: if Mode = ExpandSpiral then
11: p  p+ (slenmas + shapesli].len)/~/(2) + ringGap > to avoid collisions with
shapes of the previous ring
12: else if Mode = ExzpandRing then
13: p < p+ringGap > does not guarantee avoidance of collisions with shapes of
the previous ring
14: else if Mode = Shrink then
15: p  p —ringGap > for filling the free space left by the first big shapes
16: if p < slencyr then > We are in shrink mode and we have reached the center of
all circles
17: Mode = ExpandSpiral > We change mode from Shrink to Expand
18: p < shapes|0].len > the one at the beginning of the drawing, i.e. the size of the
biggest shape
19: slenmaa < shapesli].len > this is the max shape size in this new ring
20: 0 < Omin > for ranging the angle interval
21: X < shapesli].len > the size of this shape
22: Oincr < degreesO fChord(x, p)
23: 0 < 0+ (Oincr/2)

24: z + CanvasCenterX + p * cos(6)
25: y < CanvasCenterY + p * sin(0)

26: shapecyr + shapes[i + +] > gets the next shape

27: if isEmpty(z,y, slencur) then > The space is free (required only from RING and
SHRINK)

28: drawShapeAtCenter(x,y, shapecur) > draws the shape with center at z,y

29: slencyr < shapecyr.len

30: else > The space is not free

31: i — — > For trying finding free space in the next iteration

AR, r, = ™(R3 — R?). Since the values are decreasing, also Rz — R1 and con-
sequently Ag, r,, are decreasing too. The more values we have to visualize, the
bigger the radius becomes, and the more the occupation of space tends to be
collinear, as shown in Figure 12, occupying the minimum space. Therefore the
percentage of empty/filled area is reducing.

Let’s now focus on data that follows power-law. Let Filled Area, for short FA
be the area occupied by the shapes only. Let (Y1,...,Y,) be the n values to be
visualized. If this series follows power-law then we can write Y; = Y1 /i? (using the
notations of §2.2: f(i) = a/i®, f(1) = a = Y1). The total area of shaped (FA) is
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Fig. 12: Occupied space as the number of values increases

given by FA=3%"" | Z% =Viy., z% Note that the p-series Y%, -, converges
for all p > 1 and diverges for all p < 1 (note that if p > 1 then the sum of the
p-series is ((p), i.e., the Riemann zeta function evaluated at p). The key point is
that for 8 > 1 the area of the visualized shapes is bounded, independently of how

big n is (even if n was infinite).

Let’s now estimate the empty area, denoted by E A, i.e. the area that falls within
the outer circle of the diagram but is not occupied by any shape of the diagram.

Prop. 2 The area that falls within the outer circle of the diagram but is not
occupied by any shape of the diagram, is less than 3 times the filled area by the
shapes (F'A).

Proof: Let Z be the number of the concentric rings of the diagram (obviously Z < n). Let
EA; be the empty space within ring 7. Since certainly at least one shape is placed in each ring,
e.g. in the first ring it will occupy one of the four quadrants, it holds that FA; < 3F A;, i.e.
EA; cannot be 3 times more than the filled part of ring i. Therefore, FA < 3FA. ¢

Obviously this bound is very pessimistic. However the point is that if F'A is
bounded, then the same holds for FA. To summarize we have seen that if YV
follows power-law and [ > 1 then the entire diagram is finitely bounded in normal
scale (not log-log scale) even if the number of n is infinite. In the proof of Prop.
1 (in Section 4) we have seen that 212

is the minimum chord that guarantees no
collisions. Concentric Spiral uses a + b, i.e. a larger distance. The reason is that
with a + b the diagram looks better (to the authors), however the theoretically
minimum chord can be used as well. As regards the three variations of the
algorithm, Concentric Spiralrpeqter With the minimum chord is the variation of
the algorithm that has the minimal empty space between the shapes.

7.1 Very Large Datasets

In the previous drawings, we have used minimum size 1 (i.e. 1 pixel) for making
each point visible. However if the dataset is too big, then the canvas could become
extremely big. Moreover, this causes problems with the bounding of the drawing:
the min size 1 does not allow us to achieve a drawing of bounded size, since even if
the values are extremely small they always occupy at least one pixel in the drawing
space.

If we want to tackle this problem we can use 0 as min size, i.e. 0 pixels.
However, whenever the algorithm reaches a point whose shape should have 0 as
rounded integer value, it stops drawing points, and enters into a different mode.
Specifically let (Y1, ..., Ys) be the values to be visualized and let Y, (1 < k < n) be
the first value whose re-scaled rounding is 0. In that case the values (Yy,...,Ys) are
visualized differently: a filled ring is added with area equal to S =" , Y; (after
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normalizing S in consistency with the normalization of the max value Y7). This
approach allows producing a more compact drawing, compliant with the theoretical
bounds, that also preserves the relative sizes of all the visualized values.

The size of the ring is computed as follows: Let Rgs be the radius when Yj, was
about to be drawn. The algorithm in that case stops drawing shapes and instead
fills a ring starting from the radius Ry = Ry’ + slenmaz +7ingGap up to the radius
needed for having area equal to (the normalized) S. The outer radius R, of that

ring is computed as follows w(R2 — R) = S < Ry = \/ S%WR’ZV = /R + % To
achieve the above, Algorithm 2 just needs one line at the beginning (line 4) that
checks if x = 0, i.e. if the integer rounded size is 0 pixels (that is less than 0.5
pixels), and if yes, it calls a method with the current index ¢ and the radius from
which the ring should start, i.e. the exact line is

“if (x = 0) then fillRing(i, p+ slenmaaz + ringGap); break”. An excerpt from the
visualization of 10 millions values in this way is shown in Figure 13 (it is a synthetic
dataset with max value 4000, min value 10, 20% percentage reduction between two
consecutive values, and scaling interval [0, 50]). The axes allow to understand that
we have 7 orders of magnitude (the axes in the filled ring are distributed uniformly
in [Ry, Rz] for aiding readability). Although our algorithm can show more small
objects in comparison to tree-map and sunburst (as we have seen in Figure 1), if
rings are adopted, then zoom-in on the rings cannot offer more information. To
“analyze” a ring to individual shapes we can either (a) increase the size of the
canvas, (b) click on the ring the visualize the subset of objects that belong to that
ring (and that could be done recursively as many times as the user wishes to),
or (c) enable the visualization of any subset of the values of the ring specified by
their rank (e.g. all values with rank ¢ up to rank j). As regards option (a), i.e.
the usage of a very large canvas that does not require using any ring, the user
can still locate the desired object(s) through search; this functionality (i.e. search
and locate) is supported by our implementations that are described in Section 8.3,
i.e. by the produced drawing in SVG, as well as by the interactive 3D system.
All these are aligned with [16] that stresses that for visualizing massive data it is
important to support selection, zooming, and filtering, and exploiting the rotation
capabilities of 3D (examples of 3D are given in in Section 8.3). Finally, we have to
note that if a very large canvas is selected to be used, even though our algorithm
that produces the coordinates of the objects will run fast, the visualization of the
produced raster image could require a lot of memory to load or transfer; such cases
can be handled by loading the data/image to a GIS and we have already tested
that scenario using GeoServer?, moreover one can exploit methods for visualizing
images of very big resolution like those derived by modern scanning approaches
like the one described in [56].

8 Application

Concentric Spiral and its variations can be applied in a plethora of cases. We have
focused mainly on the layout, not on other aspects, i.e. on colors, interactivity, etc,
since the latter depend on the application context. Section 8.1 discusses efficiency,
Section 8.2 provides various indicative cases, and Section 8.3 describes current

4 http://geoserver.org/
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Fig. 13: 107 values with filled rings for the very small values, and interactive options

implementations. Finally, Section 8.4 presents some preliminary feedback from
users.

8.1 Efficiency

We have implemented the algorithms using Java 1.8.0_51. In our experiments we
measure the time required by the layout algorithm to fill a N x N java array of
pixels each having a color (we did not count the time of the windowing system,
e.g. for creating the JFrame). With a laptop with rather low computational power
(Core 15-3320M CPU, 4 GB RAM, running Windows 10), Concentric Spiral needs
only 30-40 milliseconds to compute all pixels of a 1000x1000 canvas for 100,000
(filled with blue) shapes. The other two variations are more expensive since they
have to check for free spaces, therefore the elapsed time is more. For all the di-
agrams shown in this paper, these two variations were never more than 3 times
slower than Concentric Spiral. In general, all visualizations shown in this paper
(except the one with the millions of shapes) require less than 120 milliseconds to
be computed. For datasets with millions of objects, roughly it takes 15 secs per
million of objects (where each object is visualized). If however the scaling interval
includes 0, then with the method presented in §7.1 the visualization of 10 million
objects takes 17 secs.

8.2 Examples

Here we provide various examples.

Word Frequencies. Figure 14 shows the frequency of 23,113 words in Shake-
speare® in the three plots (normal, log-log and Concentric Spiral).

Cities Population. Figure 15 shows the populations of the 1000 biggest cities in
3D, where each color represents a different continent, and the volume of each cube
corresponds to the population of the corresponding city. The figure includes visu-
alization with the Concentric Spiral layout, and with the pie chart-like extension
for clustering (using the same angle range for each slice, although any range can
be used.) Shots from different angles in 3D visualization system are also shown,
as well as one case (at the bottom right of Figure 15) where instead of cubes we

5 From https://data.world/tronovan/shakespeare-word-frequencies on May 27, 2019.
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Fig. 14: The frequency of 23,113 words in Shakespeare: (a) normal, (b) log-log
plot, (c¢) Concentric Spiral

use cuboids, where all cubes have the same width (in this case the width of the
smallest cube) for comparing the values more easily based on only their heights.

® Asia
Africa

® Europe

@® North America
South America
Oceania

Al i)

Fig. 15: The 1000 biggest cities clustered by continent

Coronavirus (COVID-19). Figure 16 shows in 3D all covid-19 cases, recovered
cases and deaths on May 8, 2020: the bottom cubes represent the total cases
detected with covid-19, the intermediate correspond to the recovered cases while
the upmost to the total deaths. The above (and some more examples) are available
at the webpage https://rb.gy/d2impg.

8.3 Implementations

We have already two implementations of the algorithms in two different settings.
The first is stand-alone application (that we call “CoSpi”) that allows the user to
load a csv file and interactively select the desired version of the algorithms and pa-
rameter values enabling to derive the desired drawing(s) and save them as images
or SVG files, as shown in Figure 17. The first version of this application has just
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Fig. 16: COVID-19 cases, recovered cases and deaths per country, May 8, 2020

o)

been released publicly (available at https://rb.gy/oogsld). The second imple-
mentation, is within a Web-based visualization system that exploits the algorithm
for producing interactive 3D visualizations (that system was used for producing
figures 15 and 16).

8.4 Feedback from Users

In order to understand whether users would like, or prefer, this kind of visual-
ization, we conducted a small-scale evaluation mainly with students. Since not
all users are familiar with systems that produce plots and visualizations, and for
excluding the interactive functionalities (that depend on the particular system),
we selected two easy to grasp datasets, specifically the populations of the 1000
largest cities, and the populations of all countries. For each dataset we produced
one pdf that contained visualizations of: (1) normal plot, (2) log-plot, (3) tree-map,
(4) sunburst, and (5) CoSpi. Among the various options that are possible with of
these types of diagrams (relating to sizes, labels, axes, etc), we selected only two
indicative ones for each kind. Then we asked the participants to inspect these
visualizations and then to express their preference. No particular task was given to
the users, because we did not want to include interactivity, since there is no single
system that supports all these visualizations. We also have to mention, that the
resolution of the pdf was low because it was produced by screenshots, so the users
could not fully read all labels and zoom-in, however, they could get clearly the
general idea. We invited by email various persons to participate in the evaluation
voluntarily. No training material was given to them, and the participation to this
evaluation was optional (invitation by email). Eventually, 28 persons participated
(from Dec 10, 2020 to Dec 24, 2020).

In numbers, the participants were 32.1% female and 67.9% male, with ages
ranging from 19 to 55 years; Figure 18 shows the histograms of the ages of the
participants. As regards occupation and skills, 71.4% were computer science stu-
dents (undergraduate and graduate) and 28.6% of them professionals (mainly en-
gineers). The task description is shown next:

“At first download the zip file X that contains two excel sheets: one with the pop-
ulations of the 235 countries and another one with the populations of the 1000
largest cities. Now suppose that you would like to prepare a presentation of these
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Fig. 17: Examples of visualizations using CoSpi (over a dataset with city popula-
tions)

two datasets. Open the two pdf files (that you can find in the zip file) that contain
5 different types of visualization of these two datasets. Please have a look and then
fill the small questionnaire that you can find below. Please ignore the low resolu-
tion, i.e. do not judge the diagrams based on their resolution.”

The questionnaire comprised questions of the form: ” How would you rate the X
Plots: Very Useful, Useful, Little Useful, Not Useful”. The results are visualized
in Figure 18. By inspecting the results it is clear that users did not like much the
classical normal or log plots for the task at hand, instead they preferred tree-map,
sunburst and CoSpi. Between the last three, no clear conclusion can be drawn,
given the low resolution and the non-interactive nature of the task. They key-
point is that users considered CoSpi as an acceptable method, since it achieved
preferences quite close with the other well-established methods.

9 Concluding Remarks

The visualization of medium and large number of values that exhibit big varia-
tions is a challenging task. We presented a novel family of algorithms that places
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Fig. 18: Feedback by the users: Ages and Preferences of the Participants

objects in the 2D space (in a spiral-like layout), and satisfies a set of requirements
that are not supported by the existing methods. One merit of the core algorithm
(Concentric Spiral) is that it derives layouts that are suitable for collections of
values whose sizes follow power-law because it makes evident the bigger values
and it does not leave empty spaces in the peripheral area which is occupied by
the majority of the values which are small, thus the produced drawings are both
informative and compact, and the aspect ratio of all visualized shapes is 1. The
algorithm has linear time complexity (if the values are sorted) and very limited
main memory requirements, making it appropriate for very big collections of val-
ues (a few seconds are enough for producing the layout of millions of objects).
For power laws with an exponent greater than one, it is proved that the occupied
space is finite, even if the number of elements is infinite, and we have seen that the
enrichment of Concentric Spiral with filled areas is compliant with the theoretical
bounds and preserves the relative sizes of all the visualized values. Apart from
the core algorithm, we investigated variations of the algorithm that can further
reduce the empty space between the big values (if that is required), as well as
extensions for showing and comparing more than one sets of values. We proved
the feasibility and demonstrated the efficiency of the algorithm by providing two
different implementations in different contexts. Finally we showcased applications
of the algorithms in various datasets®. The proposed method can enrich existing
visualization frameworks and interactive visualizations in general. In future it is
worth investigating automatic methods for tuning the parameters of the algo-
rithms, based on the characteristics of the dataset and the available size of the
canvas, for suggesting configurations to the user and plugging the visualization
to an engine for analytic queries for investigating various kinds of interactivity.

6 More examples at: https://rb.gy/ocogsld
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Data Availability Statement

The datasets visualized during the current study are available in the webpage
of the system http://www.ics.forth.gr/~tzitzik/demos/cospi, specifically the
file with the windows executable client contains a folder with the dataset with
the city populations, country populations, city populations and continents, and
Shakespeare word frequencies.

The covid-19 related datasets that are visualized by the 3D system that is given
in the webpage of the system http://www.ics.forth.gr/~tzitzik/demos/cospi
are dynamically fetched from https://pomber.github.io/covidl9/timeseries.
json.

The various synthetically produced datasets generated and visualized during
the current study are not publicly available since they do not have any distinctive
characteristic; they were used for measuring efficiency (the latter can be measured
by any dataset of that size), but are available from the corresponding author on
reasonable request.

The source code of the client will be made available in github upon acceptance
of this paper.
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